1
|
Liu Z, Sun X. Instantaneous Marcus theory for photoinduced charge transfer dynamics in multistate harmonic model systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:315201. [PMID: 38657642 DOI: 10.1088/1361-648x/ad42f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Modeling the dynamics of photoinduced charge transfer (CT) in condensed phases presents challenges due to complicated many-body interactions and the quantum nature of electronic transitions. While traditional Marcus theory is a robust method for calculating CT rate constants between electronic states, it cannot account for the nonequilibrium effects arising from the initial nuclear state preparation. In this study, we employ the instantaneous Marcus theory (IMT) to simulate photoinduced CT dynamics. IMT incorporates nonequilibrium structural relaxation following a vertical photoexcitation from the equilibrated ground state, yielding a time-dependent rate coefficient. The multistate harmonic (MSH) model Hamiltonian characterizes an organic photovoltaic carotenoid-porphyrin-fullerene triad dissolved in explicit tetrahydrofuran solvent, constructed by mapping all-atom inputs from molecular dynamics simulations. Our calculations reveal that the electronic population dynamics of the MSH models obtained with IMT agree with the more accurate quantum-mechanical nonequilibrium Fermi's golden rule. This alignment suggests that IMT provides a practical approach to understanding nonadiabatic CT dynamics in condensed-phase systems.
Collapse
Affiliation(s)
- Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, People's Republic of China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, People's Republic of China
- Department of Chemistry, New York University, New York, NY 10003, United States of America
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, People's Republic of China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, People's Republic of China
- Department of Chemistry, New York University, New York, NY 10003, United States of America
| |
Collapse
|
2
|
Cheng Y, Ouyang W, Liu L, Tang L, Zhang Z, Yue X, Liang L, Hu J, Luo T. Molecular recognition of ITIM/ITSM domains with SHP2 and their allosteric effect. Phys Chem Chem Phys 2024; 26:9155-9169. [PMID: 38165855 DOI: 10.1039/d3cp03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Src homology 2-domain-containing tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase that is widely expressed in a variety of cells and regulates the immune response of T cells through the PD-1 pathway. However, the activation mechanism and allosteric effects of SHP2 remain unclear, hindering the development of small molecule inhibitors. For the first time, in this study, the complex structure formed by the intact PD-1 tail and SHP2 was modeled. The molecular recognition and conformational changes of inactive/active SHP2 versus ITIM/ITSM were compared based on prolonged MD simulations. The relative flexibility of the two SH2 domains during MD simulations contributes to the recruitment of ITIM/ITSM and supports the subsequent conformational change of SHP2. The binding free energy calculation shows that inactive SHP2 has a higher affinity for ITIM/ITSM than active SHP2, mainly because the former's N-SH2 refers to the α-state. In addition, a significant decrease in the contribution to the binding energy of certain residues (e.g., R32, S34, K35, T42, and K55) of conformationally transformed SHP2 contributes to the above result. These detailed changes during conformational transition will provide theoretical guidance for the molecular design of subsequent novel anticancer drugs.
Collapse
Affiliation(s)
- Yan Cheng
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
- Multi-omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zhigang Zhang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
- Multi-omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| |
Collapse
|