1
|
Piller P, Reiterer P, Semeraro EF, Pabst G. Metal ion cofactors modulate integral enzyme activity by varying differential membrane curvature stress. RSC APPLIED INTERFACES 2024:d4lf00309h. [PMID: 39479198 PMCID: PMC11514723 DOI: 10.1039/d4lf00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Metal ions are well-known cofactors of protein function and stability. In the case of the integral membrane enzyme OmpLA (outer membrane phospholipase A) the active dimer is stabilized by calcium ions. We studied the lipid hydrolysis kinetics of OmpLA in charge-neutral and charged membranes with symmetric or asymmetric transbilayer lipid distributions. In charge-neutral membranes, OmpLA was more active in symmetric bilayers due to the lower differential curvature stress between membrane leaflets. Strikingly, this behavior was completely reversed in charged bilayers. Measurements revealed intrinsic molecular shape changes in the charged lipids upon addition of calcium. This effectively reduces the differential curvature stress in charged asymmetric membranes leading to increased protein activity. This conclusion is further supported by similar effects observed upon the addition of sodium ions, which also alter the shape of the lipids, but do not specifically interact with the protein. Additional lipid-protein interactions likely contribute to this phenomenon. Our findings demonstrate that ion cofactors not only interact directly with membrane proteins but also modulate protein activity indirectly by altering the effective molecular shape of charged lipid species.
Collapse
Affiliation(s)
- Paulina Piller
- Biophysics, Institute of Molecular Biosciences, University of Graz NAWI Graz Graz Austria +43 316 380 4989
- BioTechMed Graz Graz Austria
- Field of Excellence BioHealth Graz Austria
| | - Paul Reiterer
- Biophysics, Institute of Molecular Biosciences, University of Graz NAWI Graz Graz Austria +43 316 380 4989
- BioTechMed Graz Graz Austria
- Field of Excellence BioHealth Graz Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Biosciences, University of Graz NAWI Graz Graz Austria +43 316 380 4989
- BioTechMed Graz Graz Austria
- Field of Excellence BioHealth Graz Austria
| | - Georg Pabst
- Biophysics, Institute of Molecular Biosciences, University of Graz NAWI Graz Graz Austria +43 316 380 4989
- BioTechMed Graz Graz Austria
- Field of Excellence BioHealth Graz Austria
| |
Collapse
|
2
|
Mohanta S, Das NK, Saha S, Goswami C. Capsaicin-insensitivity of TRPV1-R575D mutant located at the lipid-water-interface region can be rescued by either extracellular Ca 2+-chelation or cholesterol reduction. Neurochem Int 2024; 179:105826. [PMID: 39117000 DOI: 10.1016/j.neuint.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
TRPV1 acts as a unique polymodal ion channel having distinct structure and gating properties. In this context, TRPV1-R575D represents a special mutant located at the inner lipid-water-interface (LWI) region that has less possibility of interaction with membrane cholesterol. In control conditions, this lab-generated mutant of TRPV1 shows no "ligand-sensitivity", reduced surface expression, reduced localization in the lipid rafts, yet induces high cellular lethality. Notably, the cellular lethality induced by TRPV1-R575D expression can be rescued by adding 5'I-RTX (a specific inhibitor of TRPV1) or by introducing another mutation in the next position, i.e. in TRPV1-R575D/D576R. In this work we characterized TRPV1-R575D and TRPV1-R575D/D576R mutants in different cellular conditions and compared with the TRPV1-WT. We report that the "ligand-insensitivity" of TRPV1-R575D can be rescued in certain conditions, such as by chelation of extracellular Ca2+, or by reduction of the membrane cholesterol. Here we show that Ca2+ plays an important role in the channel gating of TRPV1-WT as well as LWI mutants (TRPV1-R575D, TRPV1-R575D/D576R). However, chelation of intracellular Ca2+ or depletion of ER Ca2+ did not have a significant effect on the TRPV1-R575D. Certain properties related to channel gating of mutant TRPV1-R575D/D576R can be rescued partially or fully in a context -dependent manner. Cholesterol depletion also alters these properties. Our data suggests that lower intracellular basal Ca2+ acts as a pre-requisite for further opening of TRPV1-R575D. These findings enable better understanding of the structure-function relationship of TRPV1 and may be critical in comprehending the channelopathies induced by other homologous thermosensitive TRPVs.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha, 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Mortara L, Mukhina T, Chaimovich H, Brezesinski G, van der Vegt NFA, Schneck E. Anion Competition at Positively Charged Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6949-6961. [PMID: 38502024 DOI: 10.1021/acs.langmuir.3c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Interactions of anions with hydrophobic surfaces of proteins and water-soluble polymers depend on the ability of the ions to shed their hydration shells. At positively charged surfactant monolayers, the interactions of anions are less well understood. Due to the interplay of electrostatic surface forces, hydration effects, and ion-ion interactions in the electrostatic double layer, a comprehensive microscopic picture remains elusive. Herein, we study the interactions of chloride, bromide, and a mixture of these two anions at the aqueous interface of dihexadecyldimethylammonium (DHDA+) and dioctadecyldimethylammonium (DODA+) cationic monolayers. Using molecular dynamics simulations and three surface-sensitive X-ray scattering techniques, we demonstrate that bromide interacts preferentially over chloride with both monolayers. The structure of the two monolayers and their interfacial electron density profiles obtained from the simulations quantitatively reproduce the experimental data. We observe that chloride and bromide form contact ion pairs with the quaternary ammonium groups on both monolayers. However, ion pairing with bromide leads to a greater reduction in the number of water molecules hydrating the anion, resulting in more energetically stable ion pairs. This leads to long-range (>3 nm) lateral correlations between bromide ions on the structured DODA+ monolayer. These observations indicate that ion hydration is the dominant factor determining the interfacial electrolyte structure.
Collapse
Affiliation(s)
- Laura Mortara
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Tetiana Mukhina
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | - Hernan Chaimovich
- Chemistry Institute, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Gerald Brezesinski
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| | | | - Emanuel Schneck
- Physics Department, Technical University of Darmstadt, Darmstadt 64289, Germany
| |
Collapse
|
4
|
Overduin M, Bhat R. Recognition and remodeling of endosomal zones by sorting nexins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184305. [PMID: 38408696 DOI: 10.1016/j.bbamem.2024.184305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
The proteolipid code determines how cytosolic proteins find and remodel membrane surfaces. Here, we investigate how this process works with sorting nexins Snx1 and Snx3. Both proteins form sorting machines by recognizing membrane zones enriched in phosphatidylinositol 3-phosphate (PI3P), phosphatidylserine (PS) and cholesterol. This co-localized combination forms a unique "lipid codon" or lipidon that we propose is responsible for endosomal targeting, as revealed by structures and interactions of their PX domain-based readers. We outline a membrane recognition and remodeling mechanism for Snx1 and Snx3 involving this code element alongside transmembrane pH gradients, dipole moment-guided docking and specific protein-protein interactions. This generates an initial membrane-protein assembly (memtein) that then recruits retromer and additional PX proteins to recruit cell surface receptors for sorting to the trans-Golgi network (TGN), lysosome and plasma membranes. Post-translational modification (PTM) networks appear to regulate how the sorting machines form and operate at each level. The commonalities and differences between these sorting nexins show how the proteolipid code orchestrates parallel flows of molecular information from ribosome emergence to organelle genesis, and illuminates a universally applicable model of the membrane.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Davoudi S, Raemdonck K, Braeckmans K, Ghysels A. Capric Acid and Myristic Acid Permeability Enhancers in Curved Liposome Membranes. J Chem Inf Model 2023; 63:6789-6806. [PMID: 37917127 DOI: 10.1021/acs.jcim.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Liposomes are considered as advanced drug delivery systems for cancer treatment. A generation of pH-sensitive liposomes is being developed that use fatty acids (FAs) as a trigger for drug release in tumor tissues. However, FAs are also known to enhance permeability, and it is unclear whether FAs in liposomes may cause drug leakage or premature drug release. The passive permeability of the drug through the membrane of the liposome is thus a crucial factor for timely drug delivery. To investigate how the curvature and lipid composition of liposomes affect their passive permeability, coarse-grained molecular dynamics were performed. The permeability was determined with a counting method. Flat bilayers and three liposomes with varying diameters were studied, which had varying lipid compositions of dipalmitoylphosphatidylcholine, cholesterol, and deprotonated or neutral saturated FAs. The investigated permeants were water and two other small permeants, which have different free energy profiles (solubility) across the membrane. First, for the curvature effect, our results showed that curvature increases the water permeability by reducing the membrane thickness. The permeability increase for water is about a factor of 1.7 for the most curved membranes. However, a high curvature decreases permeability for permeants with free energy profiles that are a mix of wells and barriers in the headgroup region of the membrane. Importantly, the type of experimental setup is expected to play a dominant role in the permeability value, i.e., whether permeants are escaping or entering the liposomes. Second, for the composition effect, FAs decrease both the area per lipid (APL) and the membrane thickness, resulting in permeability increases of up to 55%. Cholesterol has a similar effect on the APL but has the opposite impact on membrane thickness and permeability. Therefore, FAs and cholesterol have opposing effects on permeability, with cholesterol's effect being slightly stronger in our simulated bilayers. As all permeability values were well within a factor of 2, and with liposomes usually being larger and less curved in experimental applications, it can be concluded that the passive drug release from a pH-sensitive liposome does not seem to be significantly affected by the presence of FAs.
Collapse
Affiliation(s)
- Samaneh Davoudi
- IBiTech─BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Block B-Entrance 36, 9000 Gent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Kevin Braeckmans
- Bio-Photonic Imaging Group, Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - An Ghysels
- IBiTech─BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Block B-Entrance 36, 9000 Gent, Belgium
| |
Collapse
|