1
|
Nakagawa S, Kurokawa M, Kambara O, Takei T, Daidoji K, Naito A, Takita M, Kawamoto A, Hirose M, Tamura A. Structural Analyses of Designed α-Helix and β-Sheet Peptide Nanofibers Using Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy and Introduction of Structure-Based Metal-Responsive Properties. Int J Mol Sci 2024; 25:1111. [PMID: 38256184 PMCID: PMC10816960 DOI: 10.3390/ijms25021111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The 21-residue peptide α3, which is artificially designed and consists of three repeats of 7 residues, is known to rapidly assemble into the α-helix nanofiber. However, its molecular structure within the fiber has not yet been fully elucidated. Thus, we conducted a thorough investigation of the fiber's molecular structure using solid-state NMR and other techniques. The molecules were found to be primarily composed of the α-helix structure, with some regions near the C- and N-terminal adopting a 310-helix structure. Furthermore, it was discovered that β-sheet hydrogen bonds were formed between the molecules at both ends. These intermolecular interactions caused the molecules to assemble parallelly in the same direction, forming helical fibers. In contrast, we designed two molecules, CaRP2 and βKE, that can form β-sheet intermolecular hydrogen bonds using the entire molecule instead of just the ends. Cryo-EM and other measurements confirmed that the nanofibers formed in a cross β structure, albeit at a slow rate, with the formation times ranging from 1 to 42 days. To create peptide nanofibers that instantaneously respond to changes in the external environment, we designed several molecules (HDM1-3) based on α3 by introducing metal-binding sites. One of these molecules was found to be highly responsive to the addition of metal ions, inducing α-helix formation and simultaneously assembling into nanofibers. The nanofibers lost their structure upon removal of the metal ion. The change occurred promptly and was reversible, demonstrating that the intended level of responsiveness was attained.
Collapse
Affiliation(s)
- Shota Nakagawa
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Minami Kurokawa
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Ohki Kambara
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Toshiaki Takei
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Kengo Daidoji
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan (A.N.)
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan (A.N.)
| | - Mao Takita
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan; (A.K.); (M.H.)
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan; (A.K.); (M.H.)
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, Kobe 657-8501, Japan; (S.N.); (M.K.)
| |
Collapse
|