1
|
Pathak AK, Bandyopadhyay T. Heat-induced transitions of an empty minute virus of mice capsid in explicit water: all-atom MD simulation. J Biomol Struct Dyn 2022; 40:11900-11913. [PMID: 34459706 DOI: 10.1080/07391102.2021.1969283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The capsid-like structure of the virus-based protein nanoparticles (NPs) can serve as bionanomaterials, with applications in biomedicines and nanotechnology. Release of packaged material from these nanocontainers is associated with subtle conformational changes of the NP structure, which in vitro, is readily accomplished by heating. Characterizing the structural changes as a function of temperature may provide fresh insights into nanomaterial/antiviral strategies. Here, we have calculated heat induced changes in the properties of an empty minute virus of mice particle using large-scale ≈ 3.0 × 106 all-atom molecular dynamics simulations. We focus on two heat induced structural changes of the NP, namely, dynamical transition (DT) and breathing transition (BT), both characterized by sudden and sharp change of measured parameters at temperatures, TDT and TBT, respectively. While DT is assessed by mean-square fluctuation of hydrogen atoms of the NP, BT is monitored through internal volume and permeation rate of water molecules through the NP. Both the transitions, resulting primarily from collective atomistic motion, are found to occur at temperatures widely separated from one another (TBT>TDT). The breathing motions, responsible for the translocation events of the packaged materials through the NP to kick off, are further probed by computing atomic resolution stresses from NVE simulations. Distribution of equilibrium atomistic stresses on the NP reveals a largely asymmetric nature and suggests structural breathing may actually represent large dynamic changes in the hotspot regions, far from the NP pores, which is in remarkable resemblance with recently conducted hydrogen-deuterium exchange coupled to mass spectrometry experiment. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arup Kumar Pathak
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Sukeník L, Mukhamedova L, Procházková M, Škubník K, Plevka P, Vácha R. Cargo Release from Nonenveloped Viruses and Virus-like Nanoparticles: Capsid Rupture or Pore Formation. ACS NANO 2021; 15:19233-19243. [PMID: 34881874 DOI: 10.1021/acsnano.1c04814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Virus-like nanoparticles are protein shells similar to wild-type viruses, and both aim to deliver their content into a cell. Unfortunately, the release mechanism of their cargo/genome remains elusive. Pores on the symmetry axes were proposed to enable the slow release of the viral genome. In contrast, cryo-EM images showed that capsids of nonenveloped RNA viruses can crack open and rapidly release the genome. We combined in vitro cryo-EM observations of the genome release of three viruses with coarse-grained simulations of generic virus-like nanoparticles to investigate the cargo/genome release pathways. Simulations provided details on both slow and rapid release pathways, including the success rates of individual releases. Moreover, the simulated structures from the rapid release pathway were in agreement with the experiment. Slow release occurred when interactions between capsid subunits were long-ranged, and the cargo/genome was noncompact. In contrast, rapid release was preferred when the interaction range was short and/or the cargo/genome was compact. These findings indicate a design strategy of virus-like nanoparticles for drug delivery.
Collapse
Affiliation(s)
- Lukáš Sukeník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | - Liya Mukhamedova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Michaela Procházková
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Salas GGS, Hernandez AEL, He J, Karki C, Xie Y, Sun S, Xian Y, Li L. Using computational approaches to study dengue virus capsid assembly. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2019. [DOI: 10.1515/cmb-2019-0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Dengue viral capsid plays a significant role in viral life cycle of dengue, especially in vial genome protection and virus-cell fusion. Revealing mechanisms of the viral capsid protein assembly may lead to the discovery of anti-viral drugs that inhibit the assembly of the viral capsid. The E and M-proteins are arranged into heterotetramers, which consists of two copies of E and M-protein. The heterotetramers are assembled into a highly ordered capsid. While many investigations of the interactions between E and M-proteins have been performed, there are very few studies on the interactions between the heterotetramers and their roles in capsid assembly. Utilizing a series of computational approaches, this study focuses on the assembly mechanism of the heterotetramers. Our electrostatic analyses lead to the identification of four binding modes between each two dengue heterotetramers that repeat periodically throughout the virus capsid. Among these four binding modes, heterotetramers in binding modes I, II and IV are attractive. But in the binding mode III the heterotetramers repel each other, making mode III a suitable target for drug design. Furthermore, MD simulations were performed following by salt bridges analysis. This study demonstrates that using computational approaches is a promising direction to study the dengue virus.
Collapse
Affiliation(s)
- Gicela G Saucedo Salas
- Department of Physics , University of Texas at El Paso , El Paso These authors contributed equally to this work
| | - Alan E Lopez Hernandez
- Department of Physics , University of Texas at El Paso , El Paso These authors contributed equally to this work
| | - Jiadi He
- Department of Physics , Oregon State University , Oregon
| | - Chitra Karki
- Department of Physics , University of Texas at El Paso , El Paso
| | - Yixin Xie
- Department of Physics , University of Texas at El Paso , El Paso
| | - Shengjie Sun
- Department of Physics , University of Texas at El Paso , El Paso
| | - Yuejiao Xian
- Department of Chemistry and Biochemistry , University of Texas at El Paso , El Paso
| | - Lin Li
- Department of Physics , University of Texas at El Paso , El Paso
| |
Collapse
|
4
|
Xian Y, Karki CB, Silva SM, Li L, Xiao C. The Roles of Electrostatic Interactions in Capsid Assembly Mechanisms of Giant Viruses. Int J Mol Sci 2019; 20:ijms20081876. [PMID: 30995716 PMCID: PMC6514965 DOI: 10.3390/ijms20081876] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022] Open
Abstract
In the last three decades, many giant DNA viruses have been discovered. Giant viruses present a unique and essential research frontier for studies of self-assembly and regulation of supramolecular assemblies. The question on how these giant DNA viruses assemble thousands of proteins so accurately to form their protein shells, the capsids, remains largely unanswered. Revealing the mechanisms of giant virus assembly will help to discover the mysteries of many self-assembly biology problems. Paramecium bursaria Chlorella virus-1 (PBCV-1) is one of the most intensively studied giant viruses. Here, we implemented a multi-scale approach to investigate the interactions among PBCV-1 capsid building units called capsomers. Three binding modes with different strengths are found between capsomers around the relatively flat area of the virion surface at the icosahedral 2-fold axis. Furthermore, a capsomer structure manipulation package is developed to simulate the capsid assembly process. Using these tools, binding forces among capsomers were investigated and binding funnels were observed that were consistent with the final assembled capsid. In addition, total binding free energies of each binding mode were calculated. The results helped to explain previous experimental observations. Results and tools generated in this work established an initial computational approach to answer current unresolved questions regarding giant virus assembly mechanisms. Results will pave the way for studying more complicated process in other biomolecular structures.
Collapse
Affiliation(s)
- Yuejiao Xian
- Department of Chemistry, University of Texas, 500 West University Ave, El Paso, TX 79902, USA.
| | - Chitra B Karki
- Department of Physics, University of Texas, 500 West University Ave, El Paso, TX 79902, USA.
| | - Sebastian Miki Silva
- Department of Physics, University of Texas, 500 West University Ave, El Paso, TX 79902, USA.
| | - Lin Li
- Department of Physics, University of Texas, 500 West University Ave, El Paso, TX 79902, USA.
| | - Chuan Xiao
- Department of Chemistry, University of Texas, 500 West University Ave, El Paso, TX 79902, USA.
| |
Collapse
|
5
|
Lázaro GR, Mukhopadhyay S, Hagan MF. Why Enveloped Viruses Need Cores-The Contribution of a Nucleocapsid Core to Viral Budding. Biophys J 2019; 114:619-630. [PMID: 29414708 DOI: 10.1016/j.bpj.2017.11.3782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/11/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
During the lifecycle of many enveloped viruses, a nucleocapsid core buds through the cell membrane to acquire an outer envelope of lipid membrane and viral glycoproteins. However, the presence of a nucleocapsid core is not required for assembly of infectious particles. To determine the role of the nucleocapsid core, we develop a coarse-grained computational model with which we investigate budding dynamics as a function of glycoprotein and nucleocapsid interactions, as well as budding in the absence of a nucleocapsid. We find that there is a transition between glycoprotein-directed budding and nucleocapsid-directed budding that occurs above a threshold strength of nucleocapsid interactions. The simulations predict that glycoprotein-directed budding leads to significantly increased size polydispersity and particle polymorphism. This polydispersity can be explained by a theoretical model accounting for the competition between bending energy of the membrane and the glycoprotein shell. The simulations also show that the geometry of a budding particle leads to a barrier to subunit diffusion, which can result in a stalled, partially budded state. We present a phase diagram for this and other morphologies of budded particles. Comparison of these structures against experiments could establish bounds on whether budding is directed by glycoprotein or nucleocapsid interactions. Although our model is motivated by alphaviruses, we discuss implications of our results for other enveloped viruses.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts
| | | | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
6
|
Abstract
Classical molecular dynamics modeling of whole viruses or their capsids in explicit water is discussed, and known examples from the literature are analyzed. Only works on all-atom modeling in explicit water are included. Physical chemistry of the whole system is the focus, which includes the structure and dynamics of the biomolecules as well as water and ion behavior in and around the virus particle. It was demonstrated that in most investigations molecular phenomena that currently can not be studied experimentally are successfully reproduced and explained by the simulations. These include, for example, transport and distribution of ions inside viruses that ultimately connected to their stability, the hydrodynamic pressure in the capsid related to viruses' elastic properties, the role of metal ions in virus swelling, and others. Current and future tendencies in the development of all-atom virus simulations are outlined.
Collapse
Affiliation(s)
- Elvira Tarasova
- Department of Mathematics , Aston University , Birmingham B4 7ET , U.K
- Laboratory for Computational Molecular Design , RIKEN Center for Biosystems Dynamics (BDR) , Building B, 6-2-4 Furuedai , Suita , Osaka 565-0874 , Japan
- Immanuel Kant Baltic Federal University , A. Nevskogo str. 14 , Kaliningrad 236041 , Russian Federation
| | - Dmitry Nerukh
- Department of Mathematics , Aston University , Birmingham B4 7ET , U.K
| |
Collapse
|
7
|
Hagan MF, Zandi R. Recent advances in coarse-grained modeling of virus assembly. Curr Opin Virol 2016; 18:36-43. [PMID: 27016708 DOI: 10.1016/j.coviro.2016.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA.
| |
Collapse
|