1
|
Fogg JM, Judge AK, Stricker E, Chan HL, Zechiedrich L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat Commun 2021; 12:5683. [PMID: 34584096 PMCID: PMC8478907 DOI: 10.1038/s41467-021-25936-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Allison K Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Erik Stricker
- Department of Molecular Virology and Microbiology, Houston, TX, USA
| | - Hilda L Chan
- Graduate Program in Immunology and Microbiology, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Houston, TX, USA.
- Graduate Program in Immunology and Microbiology, Houston, TX, USA.
| |
Collapse
|
2
|
Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Front Mol Biosci 2021; 8:693710. [PMID: 34235181 PMCID: PMC8256390 DOI: 10.3389/fmolb.2021.693710] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The oxDNA model of Deoxyribonucleic acid has been applied widely to systems in biology, biophysics and nanotechnology. It is currently available via two independent open source packages. Here we present a set of clearly documented exemplar simulations that simultaneously provide both an introduction to simulating the model, and a review of the model's fundamental properties. We outline how simulation results can be interpreted in terms of-and feed into our understanding of-less detailed models that operate at larger length scales, and provide guidance on whether simulating a system with oxDNA is worthwhile.
Collapse
Affiliation(s)
- A. Sengar
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - T. E. Ouldridge
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - O. Henrich
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| | - L. Rovigatti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CNR Institute of Complex Systems, Sapienza University of Rome, Rome, Italy
| | - P. Šulc
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Bores C, Woodson M, Morais MC, Pettitt BM. Effects of Model Shape, Volume, and Softness of the Capsid for DNA Packaging of phi29. J Phys Chem B 2020; 124:10337-10344. [PMID: 33151690 PMCID: PMC7903877 DOI: 10.1021/acs.jpcb.0c07478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Double-stranded DNA is under extreme confinement when packed in phage phi29 with osmotic pressures approaching 60 atm and densities near liquid crystalline. The shape of the capsid determined from experiment is elongated. We consider the effects of the capsid shape and volume on the DNA distribution. We propose simple models for the capsid of phage phi29 to capture volume, shape, and wall flexibility, leading to an accurate DNA density profile. The effect of the packaging motor twisting the DNA on the resulting density distribution has been explored. We find packing motor induced twisting leads to a greater numbers of defects formed. The emergence of defects such as bubbles or large roll angles along the DNA shows a sequence dependence, and the resulting flexibility leads to an inhomogeneous distribution of defects occurring more often at TpA steps and AT-rich regions. In conjunction with capsid elongation, this has effects on the global DNA packing structures.
Collapse
Affiliation(s)
- Cecilia Bores
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Michael Woodson
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Marc C Morais
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - B Montgomery Pettitt
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Bores C, Pettitt BM. Structure and the role of filling rate on model dsDNA packed in a phage capsid. Phys Rev E 2020; 101:012406. [PMID: 32069548 DOI: 10.1103/physreve.101.012406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 06/10/2023]
Abstract
The conformation of DNA inside bacteriophages is of paramount importance for understanding packaging and ejection mechanisms. Models describing the structure of the confined macromolecule have depicted highly ordered conformations, such as spooled or toroidal arrangements that focus on reproducing experimental results obtained by averaging over thousands of configurations. However, it has been seen that more disordered states, including DNA kinking and the presence of domains with different DNA orientation can also accurately reproduce many of the structural experiments. In this work we have compared the results obtained through different simulated filling rates. We find a rate dependence for the resulting constrained states showing different anisotropic configurations. We present a quantitative analysis of the density distribution and the DNA orientation across the capsid showing excellent agreement with structural experiments. Second, we have analyzed the correlations within the capsid, finding evidence of the presence of domains characterized by aligned segments of DNA characterized by the structure factor. Finally, we have measured the number and distribution of DNA defects such as the emergence of bubbles and kinks as function of the filling rate. We find the slower the rate the fewer kink defects that appear and they would be unlikely at experimental filling rates with our model parameters. DNA domains of various orientation get larger with slower rates.
Collapse
Affiliation(s)
- Cecilia Bores
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston Tx, 77555, USA
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston Tx, 77555, USA
| |
Collapse
|
5
|
Wang Q, Irobalieva RN, Chiu W, Schmid MF, Fogg JM, Zechiedrich L, Pettitt BM. Influence of DNA sequence on the structure of minicircles under torsional stress. Nucleic Acids Res 2017; 45:7633-7642. [PMID: 28609782 PMCID: PMC5737869 DOI: 10.1093/nar/gkx516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023] Open
Abstract
The sequence dependence of the conformational distribution of DNA under various levels of torsional stress is an important unsolved problem. Combining theory and coarse-grained simulations shows that the DNA sequence and a structural correlation due to topology constraints of a circle are the main factors that dictate the 3D structure of a 336 bp DNA minicircle under torsional stress. We found that DNA minicircle topoisomers can have multiple bend locations under high torsional stress and that the positions of these sharp bends are determined by the sequence, and by a positive mechanical correlation along the sequence. We showed that simulations and theory are able to provide sequence-specific information about individual DNA minicircles observed by cryo-electron tomography (cryo-ET). We provided a sequence-specific cryo-ET tomogram fitting of DNA minicircles, registering the sequence within the geometric features. Our results indicate that the conformational distribution of minicircles under torsional stress can be designed, which has important implications for using minicircle DNA for gene therapy.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rossitza N. Irobalieva
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wah Chiu
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F. Schmid
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan M. Fogg
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX, 77030, USA
| | - Lynn Zechiedrich
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston TX, 77030, USA
| | - B. Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Myers CG, Pettitt BM. Phage-like packing structures with mean field sequence dependence. J Comput Chem 2017; 38:1191-1197. [PMID: 28349552 PMCID: PMC5403567 DOI: 10.1002/jcc.24727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/08/2022]
Abstract
Packing of double-stranded DNA in phages must overcome both electrostatic repulsions and the problem of persistence length. We consider coarse-grained models with the ability to kink and with randomly generated disorder. We show that the introduction of kinking into configurations of the DNA polymer packaged within spherical confinement results in significant reductions of the overall energies and pressures. We use a kink model which has the ability to deform every 24 bp, close to the average length predicted from phage sequence. The introduction of such persistence length defects even with highly random packing models increases the local nematic ordering of the packed DNA polymer segments. Such local ordering allowed by kinking not only reduces the total bending energy of confined DNA due to nonlinear elasticity but also reduces the electrostatic component of the energy and pressure. We show that a broad ensemble of polymer configurations is consistent with the structural data. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher G Myers
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030-3411
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555-0144
| | - B Montgomery Pettitt
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030-3411
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555-0144
| |
Collapse
|
7
|
Abstract
Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence.
Collapse
|