1
|
Shiomi A, Nagao K, Yokota N, Tsuchiya M, Kato U, Juni N, Hara Y, Mori MX, Mori Y, Ui-Tei K, Murate M, Kobayashi T, Nishino Y, Miyazawa A, Yamamoto A, Suzuki R, Kaufmann S, Tanaka M, Tatsumi K, Nakabe K, Shintaku H, Yesylevsky S, Bogdanov M, Umeda M. Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Rep 2021; 35:109219. [PMID: 34107250 DOI: 10.1016/j.celrep.2021.109219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
| | - Nobuhiro Yokota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Utako Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motohide Murate
- UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Yuri Nishino
- Graduate School of Life Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Atsuo Miyazawa
- Graduate School of Life Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kazuya Tatsumi
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Kyoto 615-8540, Japan
| | - Kazuyoshi Nakabe
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Semen Yesylevsky
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03680 Kyiv, Ukraine
| | - Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
| |
Collapse
|
2
|
Fröhlich B, Jäger J, Lansche C, Sanchez CP, Cyrklaff M, Buchholz B, Soubeiga ST, Simpore J, Ito H, Schwarz US, Lanzer M, Tanaka M. Hemoglobin S and C affect biomechanical membrane properties of P. falciparum-infected erythrocytes. Commun Biol 2019; 2:311. [PMID: 31428699 PMCID: PMC6692299 DOI: 10.1038/s42003-019-0556-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/01/2019] [Indexed: 11/08/2022] Open
Abstract
During intraerythrocytic development, the human malaria parasite Plasmodium falciparum alters the mechanical deformability of its host cell. The underpinning biological processes involve gain in parasite mass, changes in the membrane protein compositions, reorganization of the cytoskeletons and its coupling to the plasma membrane, and formation of membrane protrusions, termed knobs. The hemoglobinopathies S and C are known to partially protect carriers from severe malaria, possibly through additional changes in the erythrocyte biomechanics, but a detailed quantification of cell mechanics is still missing. Here, we combined flicker spectroscopy and a mathematical model and demonstrated that knob formation strongly suppresses membrane fluctuations by increasing membrane-cytoskeleton coupling. We found that the confinement increased with hemoglobin S but decreases with hemoglobin C in spite of comparable knob densities and diameters. We further found that the membrane bending modulus strongly depends on the hemoglobinopathetic variant, suggesting increased amounts of irreversibly oxidized hemichromes bound to membranes.
Collapse
Affiliation(s)
- Benjamin Fröhlich
- Physical Chemistry of Biosystems, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Julia Jäger
- Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, Heidelberg University, 69120 Heidelberg, Germany
| | - Christine Lansche
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Cecilia P. Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Marek Cyrklaff
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Bernd Buchholz
- Department of Hematology and Oncology, University Children’s Hospital, Medical Faculty Mannheim, 68167 Mannheim, Germany
| | - Serge Theophile Soubeiga
- Biomolecular ResearchCenter Pietro Annigoni, University of Ouagadougou, 01 BP 364 Ouagadougou, Burkina Faso
| | - Jacque Simpore
- Biomolecular ResearchCenter Pietro Annigoni, University of Ouagadougou, 01 BP 364 Ouagadougou, Burkina Faso
| | - Hiroaki Ito
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
3
|
Linke P, Suzuki R, Yamamoto A, Nakahata M, Kengaku M, Fujiwara T, Ohzono T, Tanaka M. Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7538-7551. [PMID: 30376342 DOI: 10.1021/acs.langmuir.8b02972] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological cells in tissues alter their shapes, positions, and orientations in response to dynamic changes in their physical microenvironments. Here, we investigated the dynamic response of myoblast cells by fabricating substrates displaying microwrinkles that can reversibly change their direction within 60 s by axial compression and relaxation. To quantitatively assess the collective order of cells, we introduced the nematic order parameter of cells that takes not only the distribution of cell-wrinkle angles but also the degree of cell elongation into account. On the subcellular level, we also calculated the nematic order parameter of actin cytoskeletons that takes the rearrangement of actin filaments into consideration. The results obtained on substrates with different wrinkle wavelengths implied the presence of a characteristic wavelength beyond which the order parameters of both cells and actin cytoskeletons level off. Immunofluorescence labeling of vinculin showed that the focal adhesions were all concentrated on the peaks of wrinkles when the wavelength is below the characteristic value. On the other hand, we found focal adhesions on both the peaks and the troughs of wrinkles when the wavelength exceeds the characteristic level. The emergence of collective ordering of cytoskeletons and the adaptation of cell shapes and orientations were monitored by live cell imaging after the seeding of cells from suspensions. After the cells had reached the steady state, the orientation of wrinkles was abruptly changed by 90°. The dynamic response of myoblasts to the drastic change in surface topography was monitored, demonstrating the coordination of the shape and orientation of cells and the nematic ordering of actin cytoskeletons. The "dynamic" substrates established in this study can be used as a powerful tool in mechanobiology that helps us understand how cytoskeletons, cells, and cell ensembles respond to dynamic contact guidance cues.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| | | | | | - Masaki Nakahata
- Department of Material Engineering Science, Graduate School of Engineering Science , Osaka University , 560-8531 Osaka , Japan
| | | | | | - Takuya Ohzono
- Electronics and Photonics Research Institute , National Institute for Advanced Industrial Science and Technology , 305-8505 Tsukuba , Japan
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry , Heidelberg University , D69120 Heidelberg , Germany
| |
Collapse
|
4
|
The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol 2018; 1:211. [PMID: 30534603 PMCID: PMC6269544 DOI: 10.1038/s42003-018-0223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Sickle cell trait, a common hereditary blood disorder, protects carriers from severe disease in infections with the human malaria parasite Plasmodium falciparum. Protection is associated with a reduced capacity of parasitized erythrocytes to cytoadhere to the microvascular endothelium and cause vaso-occlusive events. However, the underpinning cellular and biomechanical processes are only partly understood and the impact on endothelial cell activation is unclear. Here, we show, by combining quantitative flow chamber experiments with multiscale computer simulations of deformable cells in hydrodynamic flow, that parasitized erythrocytes containing the sickle cell haemoglobin displayed altered adhesion dynamics, resulting in restricted contact footprints on the endothelium. Main determinants were cell shape, knob density and membrane bending. As a consequence, the extent of endothelial cell activation was decreased. Our findings provide a quantitative understanding of how the sickle cell trait affects the dynamic cytoadhesion behavior of parasitized erythrocytes and, in turn, endothelial cell activation.
Collapse
|
5
|
Matsuzaki T, Ito H, Chevyreva V, Makky A, Kaufmann S, Okano K, Kobayashi N, Suganuma M, Nakabayashi S, Yoshikawa HY, Tanaka M. Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Phys Chem Chem Phys 2018; 19:19937-19947. [PMID: 28721420 DOI: 10.1039/c7cp02771k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physical interactions of four major green tea catechin derivatives with cell membrane models were systemically investigated. Catechins with the galloyl moiety caused the aggregation of small unilamellar vesicles and an increase in the surface pressure of lipid monolayers, while those without did not. Differential scanning calorimetry revealed that, in a low concentration regime (≤10 μM), catechin molecules are not significantly incorporated into the hydrophobic core of lipid membranes as substitutional impurities. Partition coefficient measurements revealed that the galloyl moiety of catechin and the cationic quaternary amine of lipids dominate the catechin-membrane interaction, which can be attributed to the combination of electrostatic and cation-π interactions. Finally, we shed light on the mechanical consequence of catechin-membrane interactions using the Fourier-transformation of the membrane fluctuation. Surprisingly, the incubation of cell-sized vesicles with 1 μM galloyl catechins, which is comparable to the level in human blood plasma after green tea consumption, significantly increased the bending stiffness of the membranes by a factor of more than 60, while those without the galloyl moiety had no detectable influence. Atomic force microscopy and circular dichroism spectroscopy suggest that the membrane stiffening is mainly attributed to the adsorption of galloyl catechin aggregates to the membrane surfaces. These results contribute to our understanding of the physical and thus the generic functions of green tea catechins in therapeutics, such as cancer prevention.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Chemistry, Saitama University, Sakura-ku, Saitama, 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ito H, Murakami R, Sakuma S, Tsai CHD, Gutsmann T, Brandenburg K, Pöschl JMB, Arai F, Kaneko M, Tanaka M. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling. Sci Rep 2017; 7:43134. [PMID: 28233788 PMCID: PMC5324053 DOI: 10.1038/srep43134] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/19/2017] [Indexed: 12/03/2022] Open
Abstract
Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.
Collapse
Affiliation(s)
- Hiroaki Ito
- Department of Mechanical Engineering, Osaka University, 565-0871 Suita, Japan.,Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
| | - Ryo Murakami
- Department of Mechanical Engineering, Osaka University, 565-0871 Suita, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Systems Engineering, Nagoya University, 464-8603 Nagoya, Japan
| | | | | | | | - Johannes M B Pöschl
- Department of Pediatrics, Clinic of Neonatology, University of Heidelberg, D69120 Heidelberg, Germany
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, 464-8603 Nagoya, Japan
| | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, 565-0871 Suita, Japan
| | - Motomu Tanaka
- Institute of Physical Chemistry, University of Heidelberg, D69120 Heidelberg, Germany.,Institute for Integrated Cell-Material Sciences (WPI iCeMS), Kyoto University, 606-8501 Kyoto, Japan
| |
Collapse
|
7
|
Helms G, Dasanna AK, Schwarz US, Lanzer M. Modeling cytoadhesion of Plasmodium falciparum-infected erythrocytes and leukocytes-common principles and distinctive features. FEBS Lett 2016; 590:1955-71. [PMID: 26992823 PMCID: PMC5071704 DOI: 10.1002/1873-3468.12142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to the microvascular endothelial lining shares striking similarities to cytoadhesion of leukocytes. In both cases, adhesins are presented in structures that raise them above the cell surface. Another similarity is the enhancement of adhesion under physical force (catch bonding). Here, we review recent advances in our understanding of the molecular and biophysical mechanisms underlying cytoadherence in both cellular systems. We describe how imaging, flow chamber experiments, single‐molecule measurements, and computational modeling have been used to decipher the relevant processes. We conclude that although the parasite seems to induce processes that resemble the cytoadherence of leukocytes, the mechanics of erythrocytes is such that the resulting behavior in shear flow is fundamentally different.
Collapse
Affiliation(s)
- Gesa Helms
- Department of Infectious Diseases, Heidelberg University, Germany
| | - Anil Kumar Dasanna
- BioQuant, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Ulrich S Schwarz
- BioQuant, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Heidelberg University, Germany
| |
Collapse
|