1
|
Sedmidubská B, Kočišek J. Interaction of low-energy electrons with radiosensitizers. Phys Chem Chem Phys 2024; 26:9112-9136. [PMID: 38376461 DOI: 10.1039/d3cp06003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
We provide an experimentalist's perspective on the present state-of-the-art in the studies of low-energy electron interactions with common radiosensitizers, including compounds used in combined chemo-radiation therapy and their model systems. Low-energy electrons are important secondary species formed during the interaction of ionizing radiation with matter. Their role in the radiation chemistry of living organisms has become an important topic for more than 20 years. With the increasing number of works and reviews in the field, we would like to focus here on a very narrow area of compounds that have been shown to have radio-sensitizing properties on the one hand, and high reactivity towards low-energy electrons on the other hand. Gas phase experiments studying electron attachment to isolated molecules and environmental effects on reaction dynamics are reviewed for modified DNA components, nitroimidazoles, and organometallics. In the end, we provide a perspective on the future directions that may be important for transferring the fundamental knowledge about the processes induced by low-energy electrons into practice in the field of rational design of agents for concomitant chemo-radiation therapy.
Collapse
Affiliation(s)
- Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 11519 Prague, Czech Republic
- Institut de Chimie Physique, UMR 8000 CNRS and Faculté des sciences d'Orsay, Université Paris Saclay, F-91405 Orsay Cedex, France
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182223 Prague, Czech Republic.
| |
Collapse
|
2
|
Scoditti S, Dabbish E, Sicilia E. Is the cytotoxic activity of phenanthriplatin dependent on the specific size of the phenanthridine ligand π system? J Inorg Biochem 2021; 219:111447. [PMID: 33798829 DOI: 10.1016/j.jinorgbio.2021.111447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The monofunctional Pt(II) drug phenanthriplatin is a leading preclinical anticancer drug, whose main characteristic is the presence of the extended aromatic system of the phenanthridine ligand, which allows intercalation. Intercalation, in turn, induces DNA unwinding and facilitates DNA binding. Aiming at verifying to what extent the peculiar cytotoxic activity of phenanthriplatin depends on the specific size of the aromatic system, two phenanthriplatin derivatives have been designed increasing the number of the rings in the N-heterocyclic ligand, and their reactivity has been computationally investigated. Both quantum mechanical DFT computations and molecular dynamics (MD) simulations have been employed to investigate some of the aspects that are considered important for the activity of Pt(II) monofunctional complexes. In particular, the substitution of the chlorido ligand with water, subsequent interaction of the aquated complexes with guanine as a model, eventual deactivation by the model N-acetyl methionine as well as intercalation into, binding to and distortion of DNA have been examined. The outcomes of such analysis have been compared with the analogous ones for the phenanthriplatin complex in order to highlight how the addition of one more ring to the phenanthridine ligand and, eventually, its identity influence the reactivity and, consequently, the cytotoxic profile of the complexes.
Collapse
Affiliation(s)
- Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
3
|
Behmand B, Noronha AM, Wilds CJ, Marignier JL, Mostafavi M, Wagner JR, Hunting DJ, Sanche L. Hydrated electrons induce the formation of interstrand cross-links in DNA modified by cisplatin adducts. JOURNAL OF RADIATION RESEARCH 2020; 61:343-351. [PMID: 32211848 PMCID: PMC7299263 DOI: 10.1093/jrr/rraa014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Double-stranded oligonucleotides containing cisplatin adducts, with and without a mismatched region, were exposed to hydrated electrons generated by gamma-rays. Gel electrophoresis analysis demonstrates the formation of cisplatin-interstrand crosslinks from the cisplatin-intrastrand species. The rate constant per base for the reaction between hydrated electrons and the double-stranded oligonucleotides with and without cisplatin containing a mismatched region was determined by pulse radiolysis to be 7 × 109 and 2 × 109 M-1 s-1, respectively. These results provide a better understanding of the radiosensitizing effect of cisplatin adducts in hypoxic tumors and of the formation of interstrand crosslinks, which are difficult for cells to repair.
Collapse
Affiliation(s)
- B Behmand
- Groupe en sciences des radiations, Faculté de médicine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - A M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B1R6, Canada
| | - C J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B1R6, Canada
| | - J-L Marignier
- Centre de cinétique rapide ELYSE, Laboratoire de chimie physique, Université de Paris-Saclay 11, Orsay, France
| | - M Mostafavi
- Centre de cinétique rapide ELYSE, Laboratoire de chimie physique, Université de Paris-Saclay 11, Orsay, France
| | - J R Wagner
- Groupe en sciences des radiations, Faculté de médicine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - D J Hunting
- Groupe en sciences des radiations, Faculté de médicine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - L Sanche
- Groupe en sciences des radiations, Faculté de médicine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| |
Collapse
|
4
|
Dong Y, Wang Y, Zhuang P, Fu X, Zheng Y, Sanche L. Role of Transient Anions in Chemoradiation Therapy: Base Modifications, Cross-Links, and Cluster Damages Induced to Cisplatin-DNA Complexes by 1–20 eV Electrons. J Phys Chem B 2020; 124:3315-3325. [DOI: 10.1021/acs.jpcb.0c00946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yaxiao Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Puxiang Zhuang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
5
|
Dabbish E, Russo N, Sicilia E. Rationalization of the Superior Anticancer Activity of Phenanthriplatin: An In‐Depth Computational Exploration. Chemistry 2019; 26:259-268. [DOI: 10.1002/chem.201903831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Eslam Dabbish
- Department of Chemistry and Chemical Technologies Università della Calabria Ponte P. Bucci Cubo 14c 87035 Arcavacata di Rende CS Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies Università della Calabria Ponte P. Bucci Cubo 14c 87035 Arcavacata di Rende CS Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies Università della Calabria Ponte P. Bucci Cubo 14c 87035 Arcavacata di Rende CS Italy
| |
Collapse
|
6
|
Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int J Mol Sci 2019; 20:E3998. [PMID: 31426385 PMCID: PMC6720166 DOI: 10.3390/ijms20163998] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e-qf)) electrons in the process of solvation in water (presolvated electrons, e-pre), and fully solvated electrons (e-aq). A current summary of the structure of e-aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
7
|
Cai Y, Zhou L, Gao Y, Liu W, Shao Y, Zheng Y. Contribution of Base Damages to the Molecular Radiosensitization Mechanism of Platinum Chemotherapeutic Drugs. ChemistrySelect 2019. [DOI: 10.1002/slct.201803400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yanming Cai
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Limei Zhou
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Yingxia Gao
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Wenhui Liu
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Yu Shao
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| | - Yi Zheng
- Research Institute of Photocatalysis, S; tate Key Laboratory of Photocatalysis on Energy and Environment; Fuzhou University; Fuzhou 350116 P.R. China
| |
Collapse
|
8
|
Chen X, Song J, Chen X, Yang H. X-ray-activated nanosystems for theranostic applications. Chem Soc Rev 2019; 48:3073-3101. [PMID: 31106315 DOI: 10.1039/c8cs00921j] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.
Collapse
Affiliation(s)
- Xiaofeng Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | | | | | | |
Collapse
|
9
|
Huber SE, Süß D, Probst M, Mauracher A. Electron impact ionisation cross sections of cis- and trans-diamminedichloridoplatinum(II) and its hydrolysis products. Mol Phys 2018; 117:2233-2240. [PMID: 31708596 PMCID: PMC6817326 DOI: 10.1080/00268976.2018.1509148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
We report total electron-impact ionisation cross sections (EICSs) of cisplatin, its hydrolysis products and transplatin in the energy range from threshold to 10 keV using the binary-encounter-Bethe (BEB) and its relativistic variant (RBEB), and the Deutsch-Märk (DM) methods. We find reasonable agreement between all three methods, and we also note that the RBEB and the BEB methods yield very similar (almost identical) results in the considered energy range. For cisplatin, the resulting EICSs yield cross section maxima of 22.09 × 10-20 m2 at 55.4 eV for the DM method and 18.67 × 10-20 m2 at 79.2 eV for the (R)BEB method(s). The EICSs of monoaquated cisplatin yield maxima of 12.54 × 10-20 m2 at 82.8 eV for the DM method and of 9.74 × 10-20 m2 at 106 eV for the (R)BEB method(s), diaquated cisplatin yields maxima of 7.56 × 10-20 m2 at 118.5 eV for the DM method and of 5.77 × 10-20 m2 at 136 eV for the (R)BEB method(s). Molecular geometry does not affect the resulting EICS significantly, which is also reflected in very similar EICSs of the cis- and trans-isomer. Limitations of the work as well as desirable future directions in the research area are discussed.
Collapse
Affiliation(s)
- Stefan E. Huber
- Institute of Ion Physics and Applied Physics, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Daniel Süß
- Institute of Ion Physics and Applied Physics, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Michael Probst
- Institute of Ion Physics and Applied Physics, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Andreas Mauracher
- Institute of Ion Physics and Applied Physics, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 2018; 28:654-665. [PMID: 29632087 PMCID: PMC5932606 DOI: 10.1101/gr.230219.117] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Cisplatin reacts with DNA and thereby likely generates a characteristic pattern of somatic mutations, called a mutational signature. Despite widespread use of cisplatin in cancer treatment and its role in contributing to secondary malignancies, its mutational signature has not been delineated. We hypothesize that cisplatin's mutational signature can serve as a biomarker to identify cisplatin mutagenesis in suspected secondary malignancies. Knowledge of which tissues are at risk of developing cisplatin-induced secondary malignancies could lead to guidelines for noninvasive monitoring for secondary malignancies after cisplatin chemotherapy. We performed whole genome sequencing of 10 independent clones of cisplatin-exposed MCF-10A and HepG2 cells and delineated the patterns of single and dinucleotide mutations in terms of flanking sequence, transcription strand bias, and other characteristics. We used the mSigAct signature presence test and nonnegative matrix factorization to search for cisplatin mutagenesis in hepatocellular carcinomas and esophageal adenocarcinomas. All clones showed highly consistent patterns of single and dinucleotide substitutions. The proportion of dinucleotide substitutions was high: 8.1% of single nucleotide substitutions were part of dinucleotide substitutions, presumably due to cisplatin's propensity to form intra- and interstrand crosslinks between purine bases in DNA. We identified likely cisplatin exposure in nine hepatocellular carcinomas and three esophageal adenocarcinomas. All hepatocellular carcinomas for which clinical data were available and all esophageal cancers indeed had histories of cisplatin treatment. We experimentally delineated the single and dinucleotide mutational signature of cisplatin. This signature enabled us to detect previous cisplatin exposure in human hepatocellular carcinomas and esophageal adenocarcinomas with high confidence.
Collapse
|
11
|
|
12
|
Sanche L. Interaction of low energy electrons with DNA: Applications to cancer radiation therapy. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|