1
|
He Z, Moreno JA, Swain M, Wu J, Kwon O. Aminodealkenylation: Ozonolysis and copper catalysis convert C(sp 3)-C(sp 2) bonds to C(sp 3)-N bonds. Science 2023; 381:877-886. [PMID: 37616345 PMCID: PMC10753956 DOI: 10.1126/science.adi4758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Great efforts have been directed toward alkene π bond amination. In contrast, analogous functionalization of the adjacent C(sp3)-C(sp2) σ bonds is much rarer. Here we report how ozonolysis and copper catalysis under mild reaction conditions enable alkene C(sp3)-C(sp2) σ bond-rupturing cross-coupling reactions for the construction of new C(sp3)-N bonds. We have used this unconventional transformation for late-stage modification of hormones, pharmaceutical reagents, peptides, and nucleosides. Furthermore, we have coupled abundantly available terpenes and terpenoids with nitrogen nucleophiles to access artificial terpenoid alkaloids and complex chiral amines. In addition, we applied a commodity chemical, α-methylstyrene, as a methylation reagent to prepare methylated nucleosides directly from canonical nucleosides in one synthetic step. Our mechanistic investigation implicates an unusual copper ion pair cooperative process.
Collapse
Affiliation(s)
- Zhiqi He
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Jose Antonio Moreno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Manisha Swain
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Jason Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
2
|
Hu G, He J, Li Y. Controllable Synthesis of Two-Dimensional Graphdiyne Films Catalyzed by a Copper(II) Trichloro Complex. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guilin Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Khairullina E, Tumkin II, Stupin DD, Smikhovskaia AV, Mereshchenko AS, Lihachev AI, Vasin AV, Ryazantsev MN, Panov MS. Laser-Assisted Surface Modification of Ni Microstructures with Au and Pt toward Cell Biocompatibility and High Enzyme-Free Glucose Sensing. ACS OMEGA 2021; 6:18099-18109. [PMID: 34308043 PMCID: PMC8296552 DOI: 10.1021/acsomega.1c01880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 05/10/2023]
Abstract
We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 μm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 μm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 μA) and linear ranges (10-300 and 300-1500 μA) as well as the highest sensitivities of 18,570 and 2929 μA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.
Collapse
Affiliation(s)
| | - Ilya I. Tumkin
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Daniil D. Stupin
- Nanotechnology
Research and Education Centre RAS, Saint
Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | | | - Andrey S. Mereshchenko
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexey I. Lihachev
- Ioffe
Institute, 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation
| | - Andrey V. Vasin
- Peter
the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
- Nanotechnology
Research and Education Centre RAS, Saint
Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | - Maxim S. Panov
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Khvorost TA, Beliaev LY, Masaoka Y, Hidaka T, Myasnikova OS, Ostras AS, Bogachev NA, Skripkin MY, Panov MS, Ryazantsev MN, Nagasawa Y, Mereshchenko AS. Ultrafast Excited-State Dynamics of CuBr 3- Complex Studied with Sub-20 fs Resolution. J Phys Chem B 2021; 125:7213-7221. [PMID: 34170695 DOI: 10.1021/acs.jpcb.1c03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast excited-state dynamics of CuBr3- complex was studied in acetonitrile and dichloromethane solutions using femtosecond transient absorption spectroscopy with 18 fs temporal resolution and quantum-chemical DFT calculations. Upon 640 nm excitation, the CuBr3- complex is promoted to the ligand-to-metal charge transfer (LMCT) state, which then shortly undergoes internal conversion into the vibrationally hot ligand field (LF) excited state with time constants of 30 and 40 fs in acetonitrile and dichloromethane, respectively. The LF state nonradiatively relaxes into the ground state in 2.6 and 7.3 ps in acetonitrile and dichloromethane, respectively. Internal conversion of the LF state is accompanied by vibrational relaxation that occurs on the same time scale. Based on the analysis of coherent oscillations and quantum-chemical calculations, the predominant forms of the CuBr3- complex in acetonitrile and dichloromethane solutions were revealed. In acetonitrile, the CuBr3- complex exists as [CuBr3(CH3CN)2]-, whereas three forms of this complex, [CuBr3CH2Cl2]-, [CuBr3(CH2Cl2)2]-, and [CuBr3(CH2Cl2)3]-, are present in equilibrium in dichloromethane.
Collapse
Affiliation(s)
- Taras A Khvorost
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia.,ITMO University, Birzhevaya l. 4, St. Petersburg 199034, Russia
| | - Leonid Yu Beliaev
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia.,DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark
| | - Yuto Masaoka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tsubasa Hidaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Olesya S Myasnikova
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
| | - Alexey S Ostras
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
| | - Nikita A Bogachev
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
| | - Mikhail Yu Skripkin
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
| | - Maxim S Panov
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
| | - Mikhail N Ryazantsev
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia.,Saint Petersburg Academic University, ul. Khlopina 8/3, St. Petersburg 194021, Russia
| | - Yutaka Nagasawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Andrey S Mereshchenko
- Saint-Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
5
|
Huo S, Li X, Zeng Y, Meng L. Stereoselectivity and nonmigratory insertion mechanism of dimethylacetylene dicarboxylate into metallocene‐hydride of Cp
2
M(L)H [Cp =
η
5
‐C
5
H
5
; M = Nb, V; L = CO, P (OMe)
3
]: A DFT study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Suhong Huo
- College of Physics Science and Information EngineeringHebei Normal University Shijiazhuang 050024 P. R. China
- Engineering collegeYanching Institute of Technology Langfang 065201 P. R. China
| | - Xiaoyan Li
- College of Chemistry and Material ScienceHebei Normal University Shijiazhuang 050024 P. R. China
| | - Yanli Zeng
- College of Chemistry and Material ScienceHebei Normal University Shijiazhuang 050024 P. R. China
| | - Lingpeng Meng
- College of Physics Science and Information EngineeringHebei Normal University Shijiazhuang 050024 P. R. China
| |
Collapse
|
6
|
Khvorost TA, Beliaev LY, Potalueva E, Laptenkova AV, Selyutin AA, Bogachev NA, Skripkin MY, Ryazantsev MN, Tkachenko N, Mereshchenko AS. Ultrafast Photochemistry of the [Cr(NCS)6]3– Complex in Dimethyl Sulfoxide and Dimethylformamide upon Excitation into Ligand-Field Electronic State. J Phys Chem B 2020; 124:3724-3733. [DOI: 10.1021/acs.jpcb.0c00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taras A. Khvorost
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Leonid Yu. Beliaev
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Ekaterina Potalueva
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Anastasia V. Laptenkova
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Artem A. Selyutin
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
- Saint Petersburg Academic University, ul. Khlopina 8/3, St. Petersburg, 194021, Russia
| | - Nikolai Tkachenko
- Chemistry and Advanced Materials Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI-33720 Tampere, Finland
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|
7
|
Mereshchenko AS, Myasnikova OS, Olshin PK, Matveev SM, Panov MS, Kochemirovsky VA, Skripkin MY, Tarnovsky AN. Ultrafast Excited-State Dynamics of Ligand-Field and Ligand-to-Metal Charge-Transfer States of CuCl42– in Solution: A Detailed Transient Absorption Study. J Phys Chem B 2018; 122:10558-10571. [DOI: 10.1021/acs.jpcb.8b06901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrey S. Mereshchenko
- Saint-Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Olesya S. Myasnikova
- Saint-Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia
| | - Pavel K. Olshin
- Saint-Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia
| | - Sergey M. Matveev
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Maxim S. Panov
- Saint-Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | | | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia
| | - Alexander N. Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
8
|
Kamat V, Revankar V. 1,10-Phenanthroline-copper mediated ligand transformations: Synthesis and characterization of unusual mixed ligand complexes of copper (II). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Kanzaki R, Uchida S, Kodamatani H, Tomiyasu T. Copper(II) Chloro Complex Formation Thermodynamics and Structure in Ionic Liquid, 1-Butyl-3-Methylimidazolium Trifluoromethanesulfonate. J Phys Chem B 2017; 121:9659-9665. [PMID: 28937759 DOI: 10.1021/acs.jpcb.7b06287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal ions in ionic liquids are laid under an unprecedented reaction field. In order to assess the reaction thermodynamics of metal ions in such a situation, Cu2+-chloro complex formation was examined with spectroscopic and calorimetric titrations in an ionic liquid, 1-buthyl-3-methylimidazolium trifluoromethanesulfonate (C4mimTfO). In addition, the effect of the structure of the solvated complexes on the complexation mechanism was investigated with the aid of DFT calculations. Chloro complexation successively proceeded and finally provided a [CuCl4]2- species, which is also the final product in conventional molecular solvents. Their stability constants were comparable to those in molecular solvents. Interestingly, in spite of the charged solvent in the ionic liquid, the entropy profile of the complexation resembled that in the conventional molecular liquids. This indicates that the entropy gain of the released solvent species from the complexes is the main driving force of the chloro complexation in the ionic liquid. In contrast, unlike the major molecular solvents, the total coordination number of Cu2+ is saturated to 4 in the ionic liquid, and the Cl- complexation tends to be accompanied by a 1:1 exchange of the solvent TfO- from the complex. In addition, this ligand exchange was almost athermal. This possibly indicates that the coordination number is dominated by the electrostatic hindrance among the ligands including the solvent ions in the primary coordination sphere.
Collapse
Affiliation(s)
- Ryo Kanzaki
- Department of Earth and Environmental Sciences, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shuma Uchida
- Department of Earth and Environmental Sciences, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Hitoshi Kodamatani
- Department of Earth and Environmental Sciences, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Takashi Tomiyasu
- Department of Earth and Environmental Sciences, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
11
|
Mereshchenko AS, Myasnikova OS, Panov MS, Kochemirovsky VA, Skripkin MY, Budkina DS, Tarnovsky AN. Solvent Effects on Nonradiative Relaxation Dynamics of Low-Energy Ligand-Field Excited States: A CuCl 42- Complex. J Phys Chem B 2017; 121:4562-4568. [PMID: 28384409 DOI: 10.1021/acs.jpcb.7b02015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonradiative relaxation dynamics of CuCl42- complexes photoexcited into the highest-energy ligand-field electronic state (2A1) is studied in acetonitrile, dichloromethane, and chloroform solvents, as well as in acetonitrile-water and in acetonitrile-deuterated water mixtures. Due to ultrafast internal conversion, this excited state directly converts to the electronic ground state in dichloromethane and chloroform. The nonradiative relaxation constant is similar in anhydrous acetonitrile. Addition of water to acetonitrile solutions efficiently quenches the excited ligand-field 2A1 state. The quenching is proposed to be due to the diffusion-controlled formation of an electronically excited pentacoordinated [CuCl4H2O]2- encounter complex or a short-lived exciplex of similar structure, in which the electronic excitation energy transfers into the O-H stretch of the coordinated H2O molecule. This is followed by the dissociation of the pentacoordinated species, resulting in the reformation of the ground-state CuCl42- and free H2O molecules.
Collapse
Affiliation(s)
- Andrey S Mereshchenko
- Saint-Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Olesya S Myasnikova
- Saint-Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Maxim S Panov
- Saint-Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | | | - Mikhail Yu Skripkin
- Saint-Petersburg State University , 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | | | | |
Collapse
|
12
|
Mozhdehi D, Neal JA, Grindy SC, Cordeau Y, Ayala S, Holten-Andersen N, Guan Z. Tuning Dynamic Mechanical Response in Metallopolymer Networks through Simultaneous Control of Structural and Temporal Properties of the Networks. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01626] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Davoud Mozhdehi
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - James A. Neal
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Scott C. Grindy
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yves Cordeau
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sergio Ayala
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Niels Holten-Andersen
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhibin Guan
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
13
|
Velasco MI, Krapacher CR, de Rossi RH, Rossi LI. Structure characterization of the non-crystalline complexes of copper salts with native cyclodextrins. Dalton Trans 2016; 45:10696-707. [DOI: 10.1039/c6dt01468b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The characterization of non-crystalline complexes is very difficult when techniques like X-ray diffraction or NMR are not available. We propose a simple procedure to characterize the physicochemical properties of amorphous new coordination compounds between cyclodextrins (CD) and Cu2+ salts, by several techniques as TGA, FT-IR, EPR.
Collapse
Affiliation(s)
- Manuel I. Velasco
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) – CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Claudio R. Krapacher
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) – CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Rita H. de Rossi
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) – CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Laura I. Rossi
- Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) – CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| |
Collapse
|