1
|
Wappett D, Goerigk L. Benchmarking Density Functional Theory Methods for Metalloenzyme Reactions: The Introduction of the MME55 Set. J Chem Theory Comput 2023; 19:8365-8383. [PMID: 37943578 PMCID: PMC10688432 DOI: 10.1021/acs.jctc.3c00558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
We present a new benchmark set of metalloenzyme model reaction energies and barrier heights that we call MME55. The set contains 10 different enzymes, representing eight transition metals, both open and closed shell systems, and system sizes of up to 116 atoms. We use four DLPNO-CCSD(T)-based approaches to calculate reference values against which we then benchmark the performance of a range of density functional approximations with and without dispersion corrections. Dispersion corrections improve the results across the board, and triple-ζ basis sets provide the best balance of efficiency and accuracy. Jacob's ladder is reproduced for the whole set based on averaged mean absolute (percent) deviations, with the double hybrids SOS0-PBE0-2-D3(BJ) and revDOD-PBEP86-D4 standing out as the most accurate methods for the MME55 set. The range-separated hybrids ωB97M-V and ωB97X-V also perform well here and can be recommended as a reliable compromise between accuracy and efficiency; they have already been shown to be robust across many other types of chemical problems, as well. Despite the popularity of B3LYP in computational enzymology, it is not a strong performer on our benchmark set, and we discourage its use for enzyme energetics.
Collapse
Affiliation(s)
- Dominique
A. Wappett
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Kulkarni PU, Shah H, Vyas VK. Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Simulation: A Tool for Structure-based Drug Design and Discovery. Mini Rev Med Chem 2021; 22:1096-1107. [PMID: 34620049 DOI: 10.2174/1389557521666211007115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
Quantum mechanics (QM) is physics based theory which explains the physical properties of nature at the level of atoms and sub-atoms. Molecular mechanics (MM) construct molecular systems through the use of classical mechanics. So, hybrid quantum mechanics and molecular mechanics (QM/MM) when combined together can act as computer-based methods which can be used to calculate structure and property data of molecular structures. Hybrid QM/MM combines the strengths of QM with accuracy and MM with speed. QM/MM simulation can also be applied for the study of chemical process in solutions as well as in the proteins, and has a great scope in structure-based drug design (CADD) and discovery. Hybrid QM/MM also applied to HTS, to derive QSAR models and due to availability of many protein crystal structures; it has a great role in computational chemistry, especially in structure- and fragment-based drug design. Fused QM/MM simulations have been developed as a widespread method to explore chemical reactions in condensed phases. In QM/MM simulations, the quantum chemistry theory is used to treat the space in which the chemical reactions occur; however the rest is defined through molecular mechanics force field (MMFF). In this review, we have extensively reviewed recent literature pertaining to the use and applications of hybrid QM/MM simulations for ligand and structure-based computational methods for the design and discovery of therapeutic agents.
Collapse
Affiliation(s)
- Prajakta U Kulkarni
- School of Pharmacy, ITM (SLS) Baroda University, Vadodara 391510, Gujarat. India
| | - Harshil Shah
- Department of Pharmaceutical Chemistry, Sardar Patel College of Pharmacy, Bakrol, Anand 388315, Gujarat. India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat. India
| |
Collapse
|
3
|
Kwai BXC, Collins AJ, Middleditch MJ, Sperry J, Bashiri G, Leung IKH. Itaconate is a covalent inhibitor of the Mycobacterium tuberculosis isocitrate lyase. RSC Med Chem 2021; 12:57-61. [PMID: 34046597 PMCID: PMC8130629 DOI: 10.1039/d0md00301h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Itaconate is a mammalian antimicrobial metabolite that inhibits the isocitrate lyases (ICLs) of Mycobacterium tuberculosis. Herein, we report that ICLs form a covalent adduct with itaconate through their catalytic cysteine residue. These results reveal atomic details of itaconate inhibition and provide insights into the catalytic mechanism of ICLs.
Collapse
Affiliation(s)
- Brooke X C Kwai
- School of Chemical Sciences, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
| | - Annabelle J Collins
- School of Chemical Sciences, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
| | - Martin J Middleditch
- School of Biological Sciences, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
- Auckland Science Analytical Services, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland Private Bag 92019, Victoria Street West Auckland 1142 New Zealand
| |
Collapse
|
4
|
Demystifying the catalytic pathway of Mycobacterium tuberculosis isocitrate lyase. Sci Rep 2020; 10:18925. [PMID: 33144641 PMCID: PMC7609661 DOI: 10.1038/s41598-020-75799-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/07/2020] [Indexed: 02/04/2023] Open
Abstract
Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)–OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
Collapse
|
5
|
da Silva LS, Barbosa UR, Silva LDC, Soares CMA, Pereira M, da Silva RA. Identification of a new antifungal compound against isocitrate lyase of Paracoccidioides brasiliensis. Future Microbiol 2019; 14:1589-1606. [DOI: 10.2217/fmb-2019-0166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To perform virtual screening of compounds based on natural products targeting isocitrate lyase of Paracoccidioides brasiliensis. Materials & methods: Homology modeling and molecular dynamics simulations were applied in order to obtain conformational models for virtual screening. The selected hits were tested in vitro against enzymatic activity of ICL of the dimorphic fungus P. brasiliensis and growth of the Paracoccidioides spp. The cytotoxicity and selectivity index of the compounds were defined. Results & conclusion: Carboxamide, lactone and β-carboline moieties were identified as interesting chemical groups for the design of new antifungal compounds. The compounds inhibited ICL of the dimorphic fungus P. brasiliensis activity. The compound 4559339 presented minimum inhibitory concentration of 7.3 μg/ml in P. brasiliensis with fungicidal effect at this concentration. Thus, a new potential antifungal against P. brasiliensis is proposed.
Collapse
Affiliation(s)
- Luciane S da Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| | - Uessiley R Barbosa
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
- UNIFIMES, Centro Universitário de Mineiros, Mineiros, Goiás, 75833-130, Brazil
| | - Lívia do C Silva
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Célia MA Soares
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- LBM – Laboratory of Molecular Biology, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Roosevelt A da Silva
- Collaborative Nucleus of Biosystems, Universidade Federal de Goiás, Jataí, Goiás, 75804-020, Brazil
| |
Collapse
|
6
|
Tiwari A, Kumar A, Srivastava G, Sharma A. Screening of Anti-mycobacterial Phytochemical Compounds for Potential Inhibitors against Mycobacterium Tuberculosis Isocitrate Lyase. Curr Top Med Chem 2019; 19:600-608. [PMID: 30836915 DOI: 10.2174/1568026619666190304125603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022]
Abstract
Background and Introduction: Tuberculosis (TB) is a leading infectious disease caused by Mycobacterium tuberculosiswith high morbidity and mortality. Isocitrate lyase (MtbICL), a key enzyme of glyoxylate pathway has been shown to be involved in mycobacterial persistence, is attractive drug target against persistent tuberculosis. METHODS Virtual screening, molecular docking and MD simulation study has been integrated for screening of phytochemical based anti-mycobacterial compounds. Docking study of reported MtbICL inhibitors has shown an average binding affinity score -7.30 Kcal/mol. In virtual screening, compounds exhibiting lower binding energy than calculated average binding energy were selected as top hit compounds followed by calculation of drug likeness property. Relationship between experimental IC50 value and calculated binding gibbs free energy of reported inhibitors was also calculated through regression analysis to predict IC50 value of potential inhibitors. RESULTS Docking and MD simulation studies of top hit compounds have identified shinjudilactone (quassinoid), lecheronol A (pimarane) and caniojane (diterpene) as potential MtbICL inhibitors. CONCLUSION Phytochemical based anti-mycobacterial compound can further developed into effective drugs against persistence tuberculosis with lesser toxicity and side effects.
Collapse
Affiliation(s)
- Ashish Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plant (CIMAP), Lucknow-226015, Uttar Pradesh, India
| | - Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plant (CIMAP), Lucknow-226015, Uttar Pradesh, India
| | - Gaurava Srivastava
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plant (CIMAP), Lucknow-226015, Uttar Pradesh, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plant (CIMAP), Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
7
|
Chotpatiwetchkul W, Boonyarattanakalin K, Gleeson D, Gleeson MP. Exploring the catalytic mechanism of dihydropteroate synthase: elucidating the differences between the substrate and inhibitor. Org Biomol Chem 2018. [PMID: 28639657 DOI: 10.1039/c7ob01272a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dihydropteroate synthase (DHPS) catalyzes the condensation of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) with p-aminobenzoic acid (pABA) and is a well validated target for anti-malarial and anti-bacterial drugs. However, in recent years its utility as a therapeutic target has diminished considerably due to multiple mutations. As such, considerable structural biology and medicinal chemistry effort has been expended to understand and overcome this issue. To date no detailed computational analysis of the protein mechanism has been made despite the detailed crystal structures and multiple mechanistic proposals being made. In this study the mechanistic proposals for DHPS have been systematically investigated using a hybrid QM/MM method. We aimed to compare the energetics associated with SN1 and SN2 processes, whether the SN1 process involves a carbocation or neutral DHP intermediate, uncover the identity of the general base in the catalytic mechanism, and understand the differences in substrate vs. inhibitor reactivity. Our results suggest a reaction that follows an SN1 process with the rate determining step being C-O bond breaking to give a carbocation intermediate. Comparative studies on the inhibitor STZ confirm the experimental observations that it is also a DHPS substrate.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Faculty of Pharmacy, Siam University, 38 Petkasem Rd., Phasicharoen, Bangkok, 10160, Thailand
| | | | | | | |
Collapse
|
8
|
Jongkon N, Gleeson D, Gleeson MP. Elucidation of the catalytic mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM calculations. Org Biomol Chem 2018; 16:6239-6249. [DOI: 10.1039/c8ob01428k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This account describes the application of QM/MM calculations to understand the reaction mechanism of HPPK, an important pharmacological target on the folate pathway for the treatment of diseases including anti-microbial resistance, malaria and cancer.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science
- College of Industrial Technology
- King Mongkut's University of Technology North Bangkok
- Bangkok 10800
- Thailand
| | - Duangkamol Gleeson
- Department of Chemistry
- Faculty of Science
- King Mongkut's Institute of Technology Ladkrabang
- Thailand
| | - M. Paul Gleeson
- Department of Biomedical Engineering
- Faculty of Engineering
- King Mongkut's Institute of Technology Ladkrabang
- Bangkok 10520
- Thailand
| |
Collapse
|
9
|
Lee YV, Choi SB, Wahab HA, Choong YS. Active Site Flexibility of Mycobacterium tuberculosis Isocitrate Lyase in Dimer Form. J Chem Inf Model 2017; 57:2351-2357. [PMID: 28820943 DOI: 10.1021/acs.jcim.7b00265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) still remains a global threat due to the emergence of a drug-resistant strain. Instead of focusing on the drug target of active stage TB, we are highlighting the isocitrate lyase (ICL) at the dormant stage TB. ICL is one of the persistent factors for Mycobacterium tuberculosis (MTB) to survive during the dormant phase. In addition, the absence of ICL in human has made ICL a potential drug target for TB therapy. However, the dynamic details of ICL which could give insights to the ICL-ligand interaction have yet to be solved. Therefore, a series of ICL dimer dynamics studies through molecular dynamics simulation were performed in this work. The ICL active site entrance gate closure is contributed to by hydrogen bonding and electrostatic interactions with the C-terminal. Analysis suggested that the open-closed behavior of the ICL active site entrance depends on the type of ligand present in the active site. We also observed four residues (Ser91, Asp108, Asp153, and Cys191) which could possibly be the nucleophiles for nucleophilic attack on the cleavage of isocitrate at the C2-C3 bond. We hope that the elucidation of ICL dynamics can benefit future works such as lead identification or antibody design against ICL for TB therapeutics.
Collapse
Affiliation(s)
- Yie-Vern Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Sy Bing Choi
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , 11800 Minden, Penang, Malaysia
| |
Collapse
|
10
|
Bhusal RP, Bashiri G, Kwai BXC, Sperry J, Leung IKH. Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discov Today 2017; 22:1008-1016. [PMID: 28458043 DOI: 10.1016/j.drudis.2017.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/04/2017] [Accepted: 04/20/2017] [Indexed: 01/11/2023]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that can remain dormant for many years before becoming active. One way to control and eliminate TB is the identification and treatment of latent TB, preventing infected individuals from developing active TB and thus eliminating the subsequent spread of the disease. Isocitrate lyase (ICL) is involved in the mycobacterial glyoxylate and methylisocitrate cycles. ICL is important for the growth and survival of M. tuberculosis during latent infection. ICL is not present in humans and is therefore a potential therapeutic target for the development of anti-TB agents. Here, we explore the evidence linking ICL to persistent survival of M. tuberculosis. The structure, mechanism and inhibition of the enzyme is also discussed.
Collapse
Affiliation(s)
- Ram Prasad Bhusal
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Ghader Bashiri
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Brooke X C Kwai
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Chotpatiwetchkul W, Jongkon N, Hannongbua S, Gleeson MP. QM/MM investigation of the reaction rates of substrates of 2,3-dimethylmalate lyase: A catabolic protein isolated from Aspergillus niger. J Mol Graph Model 2016; 68:29-38. [PMID: 27343740 DOI: 10.1016/j.jmgm.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand
| | - Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|