1
|
Huang-Fu ZC, Tkachenko NV, Qian Y, Zhang T, Brown JB, Harutyunyan A, Chen G, Rao Y. Conical Intersections at Interfaces Revealed by Phase-Cycling Interface-Specific Two-Dimensional Electronic Spectroscopy (i2D-ES). J Am Chem Soc 2024. [PMID: 39037260 DOI: 10.1021/jacs.4c06035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Conical intersections (CIs) hold significant stake in manipulating and controlling photochemical reaction pathways of molecules at interfaces and surfaces by affecting molecular dynamics therein. Currently, there is no tool for characterizing CIs at interfaces and surfaces. To this end, we have developed phase-cycling interface-specific two-dimensional electronic spectroscopy (i2D-ES) and combined it with advanced computational modeling to explore nonadiabatic CI dynamics of molecules at the air/water interface. Specifically, we integrated the phase locked pump pulse pair with an interface-specific electronic probe to obtain the two-dimensional interface-specific responses. We demonstrate that the nonadiabatic transitions of an interface-active azo dye molecule that occur through the CIs at the interface have different kinetic pathways from those in the bulk water. Upon photoexcitation, two CIs are present: one from an intersection of an optically active S2 state with a dark S1 state and the other from the intersection of the progressed S1 with the ground state S0. We find that the molecular conformations in the ground state are different for interfacial molecules. The interfacial molecules are intimately correlated with the locally populated excited state S2 being farther away from the CI region. This leads to slower nonadiabatic dynamics at the interface than in bulk water. Moreover, we show that the nonadiabatic transition from the S1 dark state to the ground state is significantly longer at the interface than that in the bulk, which is likely due to the orientationally restricted configuration of the excited state at the interface. Our findings suggest that orientational configurations of molecules manipulate reaction pathways at interfaces and surfaces.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nikolay V Tkachenko
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Avetik Harutyunyan
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Gugang Chen
- Honda Research Institute, USA, Inc., San Jose, California 95134, United States
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
2
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
3
|
Mendis KC, Li X, Valdiviezo J, Banziger SD, Zhang P, Ren T, Beratan DN, Rubtsov IV. Electron transfer rate modulation with mid-IR in butadiyne-bridged donor-bridge-acceptor compounds. Phys Chem Chem Phys 2024; 26:1819-1828. [PMID: 38168814 DOI: 10.1039/d3cp03175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Controlling electron transfer (ET) processes in donor-bridge-acceptor (DBA) compounds by mid-IR excitation can enhance our understanding of the ET dynamics and may find practical applications in molecular sensing and molecular-scale electronics. Alkyne moieties are attractive to serve as ET bridges, as they offer the possibility of fast ET and present convenient vibrational modes to perturb the ET dynamics. Yet, these bridges introduce complexity because of the strong torsion angle dependence of the ET rates and transition dipoles among electronic states and a shallow torsion barrier. In this study, we implemented ultrafast 3-pulse laser spectroscopy to investigate how the ET from the dimethyl aniline (D) electron donor to the N-isopropyl-1,8-napthalimide (NAP) electron acceptor can be altered by exciting the CC stretching mode (νCC) of the butadiyne bridge linking the donor and acceptor. The electron transfer was initiated by electronically exciting the acceptor moiety at 400 nm, followed by vibrational excitation of the alkyne, νCC, and detecting the changes in the absorption spectrum in the visible spectral region. The experiments were performed at different delay times t1 and t2, which are the delays between UV-mid-IR and mid-IR-Vis pulses, respectively. Two sets of torsion-angle conformers were identified, one featuring a very fast mean ET time of 0.63 ps (group A) and another featuring a slower mean ET time of 4.3 ps (group B), in the absence of the mid-IR excitation. TD-DFT calculations were performed to determine key torsion angle dependent molecular parameters, including the electronic and vibrational transition dipoles, transition frequencies, and electronic couplings. To describe the 3-pulse data, we developed a kinetic model that includes a locally excited, acceptor-based S2 state, a charge separated S1 state, and their vibrationally excited counterparts, with either excited νCC (denoted as S1Atr, S1Btr, S2Atr, and S2Btr, where tr stands for the excited triplet bond, νCC) or excited daughter modes of the νCC relaxation (S1Ah, S1Bh, S2Ah, and S2Bh, where h stands for vibrationally hot species). The kinetic model was solved analytically, and the species-associated spectra (SAS) were determined numerically using a matrix approach, treating first the experiments with longer t1 delays and then using the already determined SAS for modeling the experiments with shorter t1 delays. Strong vibronic coupling of νCC and of vibrationally hot states makes the analysis complicated. Nevertheless, the SAS were identified and the ET rates of the vibrationally excited species, S2Atr, S2Btr and S2Bh, were determined. The results show that the ET rate for the S2A species is ca. 1.2-fold slower when the νCC mode is excited. The ET rate for species S2B is slower by ca. 1.3-fold if the compound is vibrationally hot and is essentially unchanged when the νCC mode is excited. The SAS determined for the tr and h species resemble the SAS for their respective precursor species in the 2-pulse transient absorption experiments, which validates the procedure used and the results.
Collapse
Affiliation(s)
- Kasun C Mendis
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| | - Xiao Li
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Susannah D Banziger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Tong Ren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
4
|
Bäuml L, Rott F, Schnappinger T, de Vivie-Riedle R. Following the Nonadiabatic Ultrafast Dynamics of Uracil via Simulated X-ray Absorption Spectra. J Phys Chem A 2023; 127:9787-9796. [PMID: 37955656 DOI: 10.1021/acs.jpca.3c06509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The nucleobase uracil exhibits high photostability due to ultrafast relaxation processes mediated by conical intersections (CoIns), where the interplay between nuclear and electron dynamics becomes crucial. In our previous study, we observed seemingly long-lived traces of electronic coherence for the relaxation process through the S2/S1 CoIn by applying our ansatz for coupled nuclear and electron dynamics in molecules (NEMol). In this work, we theoretically investigate how time-dependent transient X-ray absorption spectroscopy can be used to observe this ultrafast dynamics. Therefore, we calculated X-ray absorption spectra (XAS) for the oxygen K-edge, using a multireference protocol in combination with NEMol dynamics. Thus, we have access to both the transient XAS based on the nuclear wavepacket dynamics and the modulation of the signals caused by the electronic coherence induced by the excitation process and the presence of a CoIn seam. In both cases, we were able to qualitatively predict its influence on the resulting XAS.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | - Florian Rott
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | | | |
Collapse
|
5
|
Polak D, Hannon ADP, Marczak Giorio GA, Hawkins OA, Oliver TAA. The Solvent-Dependent Photophysics of Diphenyloctatetraene. J Phys Chem B 2023; 127:8199-8207. [PMID: 37708380 PMCID: PMC10544004 DOI: 10.1021/acs.jpcb.3c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/20/2023] [Indexed: 09/16/2023]
Abstract
Despite many decades of study, the excited state photophysics of polyenes remains controversial. In diphenylpolyenes with conjugated backbones that contain between 2 and 4 double carbon-carbon bonds, the first two excited electronic states are nearly degenerate but of entirely different character, and their energy splitting is strongly dependent on solvent polarizability. To examine the interplay between these different states, steady-state and time-resolved fluorescence spectroscopies were used to undertake a comprehensive investigation of diphenylocatetraene's (DPO) excited state dynamics in 10 solvents of different polarizabilities and polarities, ranging from weakly interacting alkanes to polar hydrogen-bonding alcohols. These data revealed that photopreparation of the optically bright 1Bu state resulted in fast (<170 ps) internal conversion to the lower-lying optically dark 2Ag state. The 2Ag state is responsible for almost all the observed DPO fluorescence and gains oscillator strength via vibronic intensity stealing with the near-degenerate 1Bu state. The fluorescence lifetime associated with the 2Ag state decayed monoexponentially (4.2-7.2 ns) in contrast to prior biexponential decay kinetics reported for similar polyenes, diphenylbutadiene and diphenylhexatriene. An analysis combining the measured fluorescence lifetimes and fluorescence quantum yields (the latter varying between 7 and 21%) allowed for a 190 cm-1 Herzberg-Teller vibronic coupling constant between the 1Bu and 2Ag states to be determined. The analysis also revealed that the ordering of electronic states remains constant in all the solvents studied, with the 2Ag state minimum always lower in energy than that of the 1Bu state, thus making it a relatively simple polyene compared to structurally similar diphenylhexatriene.
Collapse
Affiliation(s)
| | | | | | - Olivia A. Hawkins
- School of Chemistry, Cantock’s
Close, University of Bristol, Bristol, BS8 1TS, U.K.
| | - Thomas A. A. Oliver
- School of Chemistry, Cantock’s
Close, University of Bristol, Bristol, BS8 1TS, U.K.
| |
Collapse
|
6
|
Huang-Fu ZC, Qian Y, Zhang T, Deng GH, Brown JB, Fisher H, Schmidt S, Chen H, Rao Y. Orientational Coupling of Molecules at Interfaces Revealed by Two-Dimensional Electronic-Vibrational Sum Frequency Generation (2D-EVSFG). JACS AU 2023; 3:1413-1423. [PMID: 37234121 PMCID: PMC10206597 DOI: 10.1021/jacsau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
Photoinduced relaxation processes at interfaces are intimately related to many fields such as solar energy conversion, photocatalysis, and photosynthesis. Vibronic coupling plays a key role in the fundamental steps of the interface-related photoinduced relaxation processes. Vibronic coupling at interfaces is expected to be different from that in bulk due to the unique environment. However, vibronic coupling at interfaces has not been well understood due to the lack of experimental tools. We have recently developed a two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) for vibronic coupling at interfaces. In this work, we present orientational correlations in vibronic couplings of electronic and vibrational transition dipoles as well as the structural evolution of photoinduced excited states of molecules at interfaces with the 2D-EVSFG technique. We used malachite green molecules at the air/water interface as an example, to be compared with those in bulk revealed by 2D-EV. Together with polarized VSFG and ESHG experiments, polarized 2D-EVSFG spectra were used to extract relative orientations of an electronic transition dipole and vibrational transition dipoles at the interface. Combined with molecular dynamics calculations, time-dependent 2D-EVSFG data have demonstrated that structural evolutions of photoinduced excited states at the interface have different behaviors than those in bulk. Our results showed that photoexcitation leads to intramolecular charge transfer but no conical interactions in 25 ps. Restricted environment and orientational orderings of molecules at the interface are responsible for the unique features of vibronic coupling.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Yuqin Qian
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Tong Zhang
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Gang-Hua Deng
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Jesse B. Brown
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Haley Fisher
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Sydney Schmidt
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Hanning Chen
- Texas
Advanced Computing Center, The University
of Texas at Austin, Austin, Texas 78758, United States
| | - Yi Rao
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322, United States
| |
Collapse
|
7
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
8
|
do Casal MT, Toldo JM, Plasser F, Barbatti M. Using diketopyrrolopyrroles to stabilize double excitation and control internal conversion. Phys Chem Chem Phys 2022; 24:23279-23288. [PMID: 36164816 DOI: 10.1039/d2cp03533b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diketopyrrolopyrrole (DPP) is a pivotal functional group to tune the physicochemical properties of novel organic photoelectronic materials. Among multiple uses, DPP-thiophene derivatives forming a dimer through a vinyl linker were recently shown to quench the fluorescence observed in their isolated monomers. Here, we explain this fluorescence quenching using computational chemistry. The DPP-thiophene dimer has a low-lying doubly excited state that is not energetically accessible for the monomer. This state delays the fluorescence allowing internal conversion to occur first. We characterize the doubly excited state wavefunction by systematically changing the derivatives to tune the π-scaffold size and the acceptor and donor characters. The origin of this state's stabilization is related to the increase in the π-system and not to the charge-transfer features. This analysis delivers core conceptual information on the electronic properties of organic chromophores arranged symmetrically around a vinyl linker, opening new ways to control the balance between luminescence and internal conversion.
Collapse
Affiliation(s)
| | | | | | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France. .,Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
9
|
Phelan BT, Mara MW, Chen LX. Excited-state structural dynamics of nickel complexes probed by optical and X-ray transient absorption spectroscopies: insights and implications. Chem Commun (Camb) 2021; 57:11904-11921. [PMID: 34695174 DOI: 10.1039/d1cc03875c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excited states of nickel complexes undergo a variety of photochemical processes, such as charge transfer, ligation/deligation, and redox reactions, relevant to solar energy conversion and photocatalysis. The efficiencies of the aforementioned processes are closely coupled to the molecular structures in the ground and excited states. The conventional optical transient absorption spectroscopy has revealed important excited-state pathways and kinetics, but information regarding the metal center, in particular transient structural and electronic properties, remains limited. These deficiencies are addressed by X-ray transient absorption (XTA) spectroscopy, a detailed probe of 3d orbital occupancy, oxidation state and coordination geometry. The examples of excited-state structural dynamics of nickel porphyrin and nickel phthalocyanine have been described from our previous studies with highlights on the unique structural information obtained by XTA spectroscopy. We close by surveying prospective applications of XTA spectroscopy to active areas of Ni-based photocatalysis based on the knowledge gained from our previous studies.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
10
|
Jadoun D, Kowalewski M. Time-Resolved Photoelectron Spectroscopy of Conical Intersections with Attosecond Pulse Trains. J Phys Chem Lett 2021; 12:8103-8108. [PMID: 34410134 PMCID: PMC8404190 DOI: 10.1021/acs.jpclett.1c01843] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 05/09/2023]
Abstract
Conical Intersections (CIs), which are believed to be ubiquitous in molecular and biological systems, open up ultrafast nonradiative decay channels. A superposition of electronic states is created when a molecule passes through a CI and the nuclear wave packet branches. The resulting electronic coherence can be considered a unique signature of the CI. The involved electronic states can be resolved in the energy domain with photoelectron spectroscopy using a femtosecond pulse as a probe. However, the observation of the created electronic coherence in the time domain requires probe pulses with several electron volts of bandwidth. Attosecond pulses can probe the electronic coherence but are unable to resolve the involved electronic states. In this Letter, we propose to address this restriction by using time-resolved photoelectron spectroscopy with an attosecond pulse train as a probe. We theoretically demonstrate that the resulting photoelectron spectrum may yield energy resolution as well as the information on the created coherences in the time domain.
Collapse
Affiliation(s)
- Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Two-dimensional electronic-vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces. Proc Natl Acad Sci U S A 2021; 118:2100608118. [PMID: 34417312 DOI: 10.1073/pnas.2100608118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic-vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic-vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air-water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2D-EVSFG experiments indicate that the relaxation of the LE state, S 2, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm-1 Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S 2 state to the lower excited state S 1 We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces.
Collapse
|
12
|
Arsenault EA, Bhattacharyya P, Yoneda Y, Fleming GR. Two-dimensional electronic-vibrational spectroscopy: Exploring the interplay of electrons and nuclei in excited state molecular dynamics. J Chem Phys 2021; 155:020901. [PMID: 34266264 DOI: 10.1063/5.0053042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional electronic-vibrational spectroscopy (2DEVS) is an emerging spectroscopic technique which exploits two different frequency ranges for the excitation (visible) and detection (infrared) axes of a 2D spectrum. In contrast to degenerate 2D techniques, such as 2D electronic or 2D infrared spectroscopy, the spectral features of a 2DEV spectrum report cross correlations between fluctuating electronic and vibrational energy gaps rather than autocorrelations as in the degenerate spectroscopies. The center line slope of the spectral features reports on this cross correlation function directly and can reveal specific electronic-vibrational couplings and rapid changes in the electronic structure, for example. The involvement of the two types of transition moments, visible and infrared, makes 2DEVS very sensitive to electronic and vibronic mixing. 2DEV spectra also feature improved spectral resolution, making the method valuable for unraveling the highly congested spectra of molecular complexes. The unique features of 2DEVS are illustrated in this paper with specific examples and their origin described at an intuitive level with references to formal derivations provided. Although early in its development and far from fully explored, 2DEVS has already proven to be a valuable addition to the tool box of ultrafast nonlinear optical spectroscopy and is of promising potential in future efforts to explore the intricate connection between electronic and vibrational nuclear degrees of freedom in energy and charge transport applications.
Collapse
Affiliation(s)
- Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Bressan G, van Thor JJ. Theory of two-dimensional spectroscopy with intense laser fields. J Chem Phys 2021; 154:244111. [PMID: 34241350 DOI: 10.1063/5.0051435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional vibrational and electronic spectroscopic observables of isotropically oriented molecular samples in solution are sensitive to laser field intensities and polarization. The third-order response function formalism predicts a signal that grows linearly with the field strength of each laser pulse, thus lacking a way of accounting for non-trivial intensity-dependent effects, such as saturation and finite bleaching. An analytical expression to describe the orientational part of the molecular response, which, in the weak-field limit, becomes equivalent to a four-point correlation function, is presented. Such an expression is evaluated for Liouville-space pathways accounting for diagonal and cross peaks for all-parallel and cross-polarized pulse sequences, in both the weak- and strong-field conditions, via truncation of a Taylor series expansion at different orders. The results obtained in the strong-field conditions suggest how a careful analysis of two-dimensional spectroscopic experimental data should include laser pulse intensity considerations when determining molecular internal coordinates.
Collapse
Affiliation(s)
- Giovanni Bressan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jasper J van Thor
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
14
|
Gaynor JD, Weakly RB, Khalil M. Multimode two-dimensional vibronic spectroscopy. I. Orientational response and polarization-selectivity. J Chem Phys 2021; 154:184201. [PMID: 34241026 DOI: 10.1063/5.0047724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two-dimensional Electronic-Vibrational (2D EV) spectroscopy and two-dimensional Vibrational-Electronic (2D VE) spectroscopy are among the newest additions to the coherent multidimensional spectroscopy toolbox, and they are directly sensitive to vibronic couplings. In this first of two papers, the complete orientational response functions are developed for a model system consisting of two coupled anharmonic oscillators and two electronic states in order to simulate polarization-selective 2D EV and 2D VE spectra with arbitrary combinations of linearly polarized electric fields. Here, we propose analytical methods to isolate desired signals within complicated spectra and to extract the relative orientation between vibrational and vibronic dipole moments of the model system using combinations of polarization-selective 2D EV and 2D VE spectral features. Time-dependent peak amplitudes of coherence peaks are also discussed as means for isolating desired signals within the time-domain. This paper serves as a field guide for using polarization-selective 2D EV and 2D VE spectroscopies to map coupled vibronic coordinates on the molecular frame.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
15
|
Jadoun D, Gudem M, Kowalewski M. Capturing fingerprints of conical intersection: Complementary information of non-adiabatic dynamics from linear x-ray probes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034101. [PMID: 33981781 PMCID: PMC8096460 DOI: 10.1063/4.0000093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/08/2021] [Indexed: 05/09/2023]
Abstract
Many recent experimental ultrafast spectroscopy studies have hinted at non-adiabatic dynamics indicating the existence of conical intersections, but their direct observation remains a challenge. The rapid change of the energy gap between the electronic states complicated their observation by requiring bandwidths of several electron volts. In this manuscript, we propose to use the combined information of different x-ray pump-probe techniques to identify the conical intersection. We theoretically study the conical intersection in pyrrole using transient x-ray absorption, time-resolved x-ray spontaneous emission, and linear off-resonant Raman spectroscopy to gather evidence of the curve crossing.
Collapse
Affiliation(s)
- Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Gacek DA, Betke A, Nowak J, Lokstein H, Walla PJ. Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment-protein complexes. Phys Chem Chem Phys 2021; 23:8731-8738. [PMID: 33876032 DOI: 10.1039/d1cp00656h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In addition to (bacterio)chlorophylls, (B)Chls, photosynthetic pigment-protein complexes bind carotenoids (Cars) that fulfil various important functions which are not fully understood, yet. However, certain excited states of Cars are optically one-photon forbidden ("dark") and can potentially undergo excitation energy transfer (EET) to (B)Chls following two-photon absorption (TPA). The amount of EET is reflected by the differences in TPA and two-photon excitation (TPE) spectra of a complex (multi-pigment) system. Since it is technically and analytically demanding to resolve optically forbidden states, different studies reported varying contributions of Cars and Chls to TPE/TPA spectra. In a study using well-defined 1 : 1 Car-tetrapyrrole dyads TPE contributions of tetrapyrrole molecules, including Chls, and Cars were measured. In these experiments, TPE of Cars dominated over Chl a TPE in a broad wavelength range. Another study suggested only minor contributions of Cars to TPE spectra of pigment-protein complexes such as the plant main light-harvesting complex (LHCII), in particular for wavelengths longer than ∼600/1200 nm. By joining forces and a combined analysis of all available data by both teams, we try to resolve this apparent contradiction. Here, we demonstrate that reconstruction of a wide spectral range of TPE for LHCII and photosystem I (PSI) requires both, significant Car and Chl contributions. Direct comparison of TPE spectra obtained in both studies demonstrates a good agreement of the primary data. We conclude that in TPE spectra of LHCII and PSI, the contribution of Chls is dominating above 600/1200 nm, whereas the contributions of forbidden Car states increase particularly at wavelengths shorter than 600/1200 nm. Estimates of Car contributions to TPA as well as TPE spectra are given for various wavelengths.
Collapse
Affiliation(s)
- Daniel A Gacek
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
17
|
Fresch E, Peruffo N, Trapani M, Cordaro M, Bella G, Castriciano MA, Collini E. The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer. J Chem Phys 2021; 154:084201. [PMID: 33639732 DOI: 10.1063/5.0038242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The influence of hydrogen bonds (H-bonds) in the structure, dynamics, and functionality of biological and artificial complex systems is the subject of intense investigation. In this broad context, particular attention has recently been focused on the ultrafast H-bond dependent dynamical properties in the electronic excited state because of their potentially dramatic consequences on the mechanism, dynamics, and efficiency of photochemical reactions and photophysical processes of crucial importance for life and technology. Excited-state H-bond dynamics generally occur on ultrafast time scales of hundreds of femtoseconds or less, making the characterization of associated mechanisms particularly challenging with conventional time-resolved techniques. Here, 2D electronic spectroscopy is exploited to shed light on this still largely unexplored dynamic mechanism. An H-bonded molecular dimer prepared by self-assembly of two boron-dipyrromethene dyes has been specifically designed and synthesized for this aim. The obtained results confirm that upon formation of H-bonds and the dimer, a new ultrafast relaxation channel is activated in the ultrafast dynamics, mediated by the vibrational motions of the hydrogen donor and acceptor groups. This relaxation channel also involves, beyond intra-molecular relaxations, an inter-molecular transfer process. This is particularly significant considering the long distance between the centers of mass of the two molecules. These findings suggest that the design of H-bonded structures is a particularly powerful tool to drive the ultrafast dynamics in complex materials.
Collapse
Affiliation(s)
- Elisa Fresch
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nicola Peruffo
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Bella
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Elisabetta Collini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
18
|
Keefer D, Freixas VM, Song H, Tretiak S, Fernandez-Alberti S, Mukamel S. Monitoring molecular vibronic coherences in a bichromophoric molecule by ultrafast X-ray spectroscopy. Chem Sci 2021; 12:5286-5294. [PMID: 34168779 PMCID: PMC8179640 DOI: 10.1039/d0sc06328b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/24/2021] [Indexed: 11/21/2022] Open
Abstract
The role of quantum-mechanical coherences in the elementary photophysics of functional optoelectronic molecular materials is currently under active study. Designing and controlling stable coherences arising from concerted vibronic dynamics in organic chromophores is the key for numerous applications. Here, we present fundamental insight into the energy transfer properties of a rigid synthetic heterodimer that has been experimentally engineered to study coherences. Quantum non-adiabatic excited state simulations are used to compute X-ray Raman signals, which are able to sensitively monitor the coherence evolution. Our results verify their vibronic nature, that survives multiple conical intersection passages for several hundred femtoseconds at room temperature. Despite the contributions of highly heterogeneous evolution pathways, the coherences are unambiguously visualized by the experimentally accessible X-ray signals. They offer direct information on the dynamics of electronic and structural degrees of freedom, paving the way for detailed coherence measurements in functional organic materials.
Collapse
Affiliation(s)
- Daniel Keefer
- Departments of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
19
|
Cho M, Fleming GR. Two-Dimensional Electronic–Vibrational Spectroscopy Reveals Cross-Correlation between Solvation Dynamics and Vibrational Spectral Diffusion. J Phys Chem B 2020; 124:11222-11235. [DOI: 10.1021/acs.jpcb.0c08959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Visualizing conical intersection passages via vibronic coherence maps generated by stimulated ultrafast X-ray Raman signals. Proc Natl Acad Sci U S A 2020; 117:24069-24075. [PMID: 32929028 DOI: 10.1073/pnas.2015988117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rates and outcomes of virtually all photophysical and photochemical processes are determined by conical intersections. These are regions of degeneracy between electronic states on the nuclear landscape of molecules where electrons and nuclei evolve on comparable timescales and thus become strongly coupled, enabling radiationless relaxation channels upon optical excitation. Due to their ultrafast nature and vast complexity, monitoring conical intersections experimentally is an open challenge. We present a simulation study on the ultrafast photorelaxation of uracil, based on a quantum description of the nuclei. We demonstrate an additional window into conical intersections obtained by recording the transient wavepacket coherence during this passage with an X-ray free-electron laser pulse. Two major findings are reported. First, we find that the vibronic coherence at the conical intersection lives for several hundred femtoseconds and can be measured during this entire time. Second, the time-dependent energy-splitting landscape of the participating vibrational and electronic states is directly extracted from Wigner spectrograms of the signal. These offer a physical picture of the quantum conical intersection pathways through visualizing their transient vibronic coherence distributions. The path of a nuclear wavepacket in the vicinity of the conical intersection is directly mapped by the proposed experiment.
Collapse
|
21
|
Roy PP, Shee J, Arsenault EA, Yoneda Y, Feuling K, Head-Gordon M, Fleming GR. Solvent Mediated Excited State Proton Transfer in Indigo Carmine. J Phys Chem Lett 2020; 11:4156-4162. [PMID: 32370505 DOI: 10.1021/acs.jpclett.0c00946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Excited state proton transfer (ESPT) is thought to be responsible for the photostability of biological molecules, including DNA and proteins, and natural dyes such as indigo. However, the mechanistic role of the solvent interaction in driving ESPT is not well understood. Here, the electronic excited state deactivation dynamics of indigo carmine (InC) is mapped by visible pump-infrared probe and two-dimensional electronic-vibrational (2DEV) spectroscopy and complemented by electronic structure calculations. The observed dynamics reveal notable differences between InC in a protic solvent, D2O, and an aprotic solvent, deuterated dimethyl sulfoxide (dDMSO). Notably, an acceleration in the excited state decay is observed in D2O (<10 ps) compared to dDMSO (130 ps). Our data reveals clear evidence for ESPT in D2O accompanied by a significant change in dipole moment, which is found not to occur in dDMSO. We conclude that the ability of protic solvents to form intermolecular H-bonds with InC enables ESPT, which facilitates a rapid nonradiative S1 → S0 transition via the monoenol intermediate.
Collapse
Affiliation(s)
- Partha Pratim Roy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - James Shee
- Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Katelyn Feuling
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Martin Head-Gordon
- Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Arsenault EA, Yoneda Y, Iwai M, Niyogi KK, Fleming GR. Vibronic mixing enables ultrafast energy flow in light-harvesting complex II. Nat Commun 2020; 11:1460. [PMID: 32193383 PMCID: PMC7081214 DOI: 10.1038/s41467-020-14970-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/12/2020] [Indexed: 11/09/2022] Open
Abstract
Since the discovery of quantum beats in the two-dimensional electronic spectra of photosynthetic pigment-protein complexes over a decade ago, the origin and mechanistic function of these beats in photosynthetic light-harvesting has been extensively debated. The current consensus is that these long-lived oscillatory features likely result from electronic-vibrational mixing, however, it remains uncertain if such mixing significantly influences energy transport. Here, we examine the interplay between the electronic and nuclear degrees of freedom (DoF) during the excitation energy transfer (EET) dynamics of light-harvesting complex II (LHCII) with two-dimensional electronic-vibrational spectroscopy. Particularly, we show the involvement of the nuclear DoF during EET through the participation of higher-lying vibronic chlorophyll states and assign observed oscillatory features to specific EET pathways, demonstrating a significant step in mapping evolution from energy to physical space. These frequencies correspond to known vibrational modes of chlorophyll, suggesting that electronic-vibrational mixing facilitates rapid EET over moderately size energy gaps.
Collapse
Affiliation(s)
- Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yusuke Yoneda
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Song Y, Konar A, Sechrist R, Roy VP, Duan R, Dziurgot J, Policht V, Matutes YA, Kubarych KJ, Ogilvie JP. Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013108. [PMID: 30709236 DOI: 10.1063/1.5055244] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Multidimensional spectroscopy is the optical analog to nuclear magnetic resonance, probing dynamical processes with ultrafast time resolution. At optical frequencies, the technical challenges of multidimensional spectroscopy have hindered its progress until recently, where advances in laser sources and pulse-shaping have removed many obstacles to its implementation. Multidimensional spectroscopy in the visible and infrared (IR) regimes has already enabled respective advances in our understanding of photosynthesis and the structural rearrangements of liquid water. A frontier of ultrafast spectroscopy is to extend and combine multidimensional techniques and frequency ranges, which have been largely restricted to operating in the distinct visible or IR regimes. By employing two independent amplifiers seeded by a single oscillator, it is straightforward to span a wide range of time scales (femtoseconds to seconds), all of which are often relevant to the most important energy conversion and catalysis problems in chemistry, physics, and materials science. Complex condensed phase systems have optical transitions spanning the ultraviolet (UV) to the IR and exhibit dynamics relevant to function on time scales of femtoseconds to seconds and beyond. We describe the development of the Multispectral Multidimensional Nonlinear Spectrometer (MMDS) to enable studies of dynamical processes in atomic, molecular, and material systems spanning femtoseconds to seconds, from the UV to the IR regimes. The MMDS employs pulse-shaping methods to provide an easy-to-use instrument with an unprecedented spectral range that enables unique combination spectroscopies. We demonstrate the multispectral capabilities of the MMDS on several model systems.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Riley Sechrist
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Ved Prakash Roy
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Rong Duan
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jared Dziurgot
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Veronica Policht
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Yassel Acosta Matutes
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109, USA
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
24
|
Wu EC, Ge Q, Arsenault EA, Lewis NHC, Gruenke NL, Head-Gordon MJ, Fleming GR. Two-dimensional electronic-vibrational spectroscopic study of conical intersection dynamics: an experimental and electronic structure study. Phys Chem Chem Phys 2019; 21:14153-14163. [DOI: 10.1039/c8cp05264f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relaxation from the lowest singlet excited state of the triphenylmethane dyes, crystal violet and malachite green, is studied via two-dimensional electronic-vibrational (2DEV) spectroscopy.
Collapse
Affiliation(s)
- Eric C. Wu
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | - Qinghui Ge
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Eric A. Arsenault
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Natalie L. Gruenke
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| | | | - Graham R. Fleming
- Department of Chemistry
- University of California
- Berkeley
- USA
- Molecular Biophysics and Integrated Bioimaging Division
| |
Collapse
|
25
|
Gaynor JD, Petrone A, Li X, Khalil M. Mapping Vibronic Couplings in a Solar Cell Dye with Polarization-Selective Two-Dimensional Electronic-Vibrational Spectroscopy. J Phys Chem Lett 2018; 9:6289-6295. [PMID: 30339410 DOI: 10.1021/acs.jpclett.8b02752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study uses polarization-selective two-dimensional electronic-vibrational (2D EV) spectroscopy to map intramolecular charge transfer in the well-known solar cell dye, [Ru(dcbpy)2(NCS)2]4- (N34-), dissolved in water. A static snapshot of the vibronic couplings present in aqueous N34- is reported. At least three different initially excited singlet metal-to-ligand charge-transfer (MLCT) states are observed to be coupled to vibrational modes probed in the lowest energy triplet MLCT state, emphasizing the role of vibronic coupling in intersystem crossing. Angles between electronic and vibrational transition dipole moments are extracted from spectrally isolated 2D EV peaks and compared with calculations to develop a microscopic description for how vibrations participate with 1MLCT states in charge transfer and intersystem crossing. These results suggest that 1MLCT states with significant electron density in the electron-donating plane formed by the Ru-(NCS)2 will participate strongly in charge transfer through these vibronically coupled degrees of freedom.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Alessio Petrone
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Xiaosong Li
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| |
Collapse
|
26
|
Gaynor JD, Khalil M. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies. J Chem Phys 2018; 147:094202. [PMID: 28886647 DOI: 10.1063/1.4991745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
27
|
Greco JA, Wagner NL, Frank HA, Birge RR. The Forbidden 1 1B u– Excited Singlet State in Peridinin and Peridinin Analogues. J Phys Chem A 2018; 122:130-139. [DOI: 10.1021/acs.jpca.7b10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jordan A. Greco
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Nicole L. Wagner
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Robert R. Birge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
28
|
Oliver TAA. Recent advances in multidimensional ultrafast spectroscopy. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171425. [PMID: 29410844 PMCID: PMC5792921 DOI: 10.1098/rsos.171425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.
Collapse
Affiliation(s)
- Thomas A. A. Oliver
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
29
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
30
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
31
|
Celestino A, Eisfeld A. Tuning Nonradiative Lifetimes via Molecular Aggregation. J Phys Chem A 2017; 121:5948-5953. [DOI: 10.1021/acs.jpca.7b06259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alan Celestino
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| |
Collapse
|
32
|
Delor M, Archer SA, Keane T, Meijer AJHM, Sazanovich IV, Greetham GM, Towrie M, Weinstein JA. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation. Nat Chem 2017; 9:1099-1104. [DOI: 10.1038/nchem.2793] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/05/2017] [Indexed: 11/09/2022]
|
33
|
Gaynor JD, Courtney TL, Balasubramanian M, Khalil M. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe. OPTICS LETTERS 2016; 41:2895-8. [PMID: 27304316 DOI: 10.1364/ol.41.002895] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles.
Collapse
|
34
|
Nikodem A, Levine RD, Remacle F. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH. J Phys Chem A 2016; 120:3343-52. [PMID: 26928262 DOI: 10.1021/acs.jpca.6b00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion.
Collapse
Affiliation(s)
- Astrid Nikodem
- Département de Chimie, B6c, Université de Liège , B4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.,Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - F Remacle
- Département de Chimie, B6c, Université de Liège , B4000 Liège, Belgium.,The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
35
|
Carpenter BK, Harvey JN, Orr-Ewing AJ. The Study of Reactive Intermediates in Condensed Phases. J Am Chem Soc 2016; 138:4695-705. [DOI: 10.1021/jacs.6b01761] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barry K. Carpenter
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Jeremy N. Harvey
- Department
of Chemistry, KU Leuven, Celestijnen Laan 200F, B-3001 Heverlee, Belgium
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
36
|
Brazard J, Bizimana LA, Gellen T, Carbery WP, Turner DB. Experimental Detection of Branching at a Conical Intersection in a Highly Fluorescent Molecule. J Phys Chem Lett 2016; 7:14-9. [PMID: 26647278 DOI: 10.1021/acs.jpclett.5b02476] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conical intersections are molecular configurations at which adiabatic potential-energy surfaces touch. They are predicted to be ubiquitous, yet condensed-phase experiments have focused on the few systems with clear spectroscopic signatures of negligible fluorescence, high photoactivity, or femtosecond electronic kinetics. Although rare, these signatures have become diagnostic for conical intersections. Here we detect a coherent surface-crossing event nearly two picoseconds after optical excitation in a highly fluorescent molecule that has no photoactivity and nanosecond electronic kinetics. Time-frequency analysis of high-sensitivity measurements acquired using sub-8 fs pulses reveals phase shifts of the signal due to branching of the wavepacket through a conical intersection. The time-frequency analysis methodology demonstrated here on a model compound will enable studies of conical intersections in molecules that do not exhibit their diagnostic signatures. Improving the ability to detect conical intersections will enrich the understanding of their mechanistic role in molecular photochemistry.
Collapse
Affiliation(s)
- Johanna Brazard
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Laurie A Bizimana
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Tobias Gellen
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - William P Carbery
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
37
|
Lewis NHC, Dong H, Oliver TAA, Fleming GR. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy. J Chem Phys 2015; 143:124203. [DOI: 10.1063/1.4931634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Nicholas H. C. Lewis
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Hui Dong
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Thomas A. A. Oliver
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|