1
|
Panigrahi AR, Sahu A, Yadav P, Beura SK, Singh J, Mondal K, Singh SK. Nanoinformatics based insights into the interaction of blood plasma proteins with carbon based nanomaterials: Implications for biomedical applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:263-288. [PMID: 38448137 DOI: 10.1016/bs.apcsb.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface. Arguably, the most significant barrier is the complexity that arises by interplay of several factors like properties of nanomaterial (shape, size, surface chemistry), its interaction with suspending media (surface hydration and dehydration, surface reconstruction and release of free surface energy) and the interaction with biomolecules (conformational change in biomolecules, interaction with membrane and receptor). Tailoring a nanomaterial that minimally interacts with protein and lipids in the medium while effectively acts on target site in biological milieu has been very difficult. Computational methods and artificial intelligence techniques have displayed potential in effectively addressing this problem. Through predictive modelling and deep learning, computer-based methods have demonstrated the capability to create accurate models of interactions between nanoparticles and cell membranes, as well as the uptake of nanomaterials by cells. Computer-based simulations techniques enable these computational models to forecast how making particular alterations to a material's physical and chemical properties could enhance functional aspects, such as the retention of drugs, the process of cellular uptake and biocompatibility. We review the most recent progress regarding the bio-nano interface studies between the plasma proteins and CBNs with a special focus on computational simulations based on molecular dynamics and density functional theory.
Collapse
Affiliation(s)
| | - Abhinandana Sahu
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Singh
- Department of Applied Agriculture, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
2
|
Lichota A, Szabelski M, Krokosz A. Quenching of Protein Fluorescence by Fullerenol C 60(OH) 36 Nanoparticles. Int J Mol Sci 2022; 23:12382. [PMID: 36293241 PMCID: PMC9603995 DOI: 10.3390/ijms232012382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
The effect of the interaction between fullerenol C60(OH)36 (FUL) and alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae and human serum albumin (HSA) was studied by absorption spectroscopy, fluorescence spectroscopy, and time-resolved fluorescence spectroscopy. As shown in the study, the fluorescence intensities of ADH and HSA at excitation wavelengths λex = 280 nm (Trp, Tyr) and λex = 295 nm (Trp) are decreased with the increase in the FUL concentration. The results of time-resolved measurements indicate that both quenching mechanisms, dynamic and static, are present. The binding constant Kb and the number of binding sites were obtained for HSA and ADH. Thus, the results indicated the formation of FUL complexes and proteins. However, the binding of FUL to HSA is much stronger than that of ADH. The transfer of energy from the protein to FUL was also proved.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Mariusz Szabelski
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Anita Krokosz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Cantelli A, Malferrari M, Mattioli EJ, Marconi A, Mirra G, Soldà A, Marforio TD, Zerbetto F, Rapino S, Di Giosia M, Calvaresi M. Enhanced Uptake and Phototoxicity of C 60@albumin Hybrids by Folate Bioconjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193501. [PMID: 36234629 PMCID: PMC9565331 DOI: 10.3390/nano12193501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/12/2023]
Abstract
Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C60 molecules in a physiological environment, (ii) HSA, upon C60 binding, maintains its biological identity and biocompatibility, (iii) the C60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C60@HSA complex in HeLa cells.
Collapse
|
4
|
Interaction of fullerene C60 with bovine serum albumin at the water – air interface. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Shityakov S, Fischer A, Su KP, Hussein AA, Dandekar T, Broscheit J. Novel Approach for Characterizing Propofol Binding Affinities to Serum Albumins from Different Species. ACS OMEGA 2020; 5:25543-25551. [PMID: 33073080 PMCID: PMC7557242 DOI: 10.1021/acsomega.0c01295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 05/09/2023]
Abstract
The interaction between the main carrier (serum albumin, SA) of endogenous and exogenous compounds in the bloodstream of different species (human, bovine, canine, rat, rabbit, and sheep) and a general anesthetic agent (propofol, PR) was investigated using an experimental technique (high-performance liquid chromatography) and computational methods (molecular docking, molecular dynamics, sequence, and phylogenetic analyses). The obtained results revealed the differences in the PR binding affinity to various homologous forms of this protein with reliable statistics (R 2 = 0.9 and p-value < 0.005), correlating with the evolutionary relationships among SAs from different species. Additionally, the protein conformational changes (root-mean-square deviation ≈ 1.0 Å) and amino acid conservation of binding sites in protein domains were detected, contributing to the SA-PR binding modes. Overall, the outcomes from this study might provide a novel methodology to assess protein-ligand interactions and to gain some interesting insights into drug pharmacokinetics and pharmacodynamics to explain its variations among different species.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department
of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 40402, Taiwan
- Department
of Bioinformatics, Würzburg University, Würzburg 97074, Germany
- College
of Medicine, China Medical University, Taichung 404, Taiwan
- . Phone: +49-931-318-4550. Fax: +49-931-318-4552
| | - Anneli Fischer
- Department
of Anesthesia and Critical Care, Würzburg
University Hospital, Würzburg 97080, Germany
| | - Kuan-Pin Su
- Department
of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 40402, Taiwan
- College
of Medicine, China Medical University, Taichung 404, Taiwan
| | - Aqeel A. Hussein
- Faculty
of Dentistry, University of Al-Ameed, 56001 Karbala, Iraq
- Department
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas Dandekar
- Department
of Bioinformatics, Würzburg University, Würzburg 97074, Germany
- Phone: +49 (0)931 31-84551. Fax: +49-931-318-4552
| | - Jens Broscheit
- Department
of Anesthesia and Critical Care, Würzburg
University Hospital, Würzburg 97080, Germany
| |
Collapse
|
6
|
Serda M, Szewczyk G, Krzysztyńska-Kuleta O, Korzuch J, Dulski M, Musioł R, Sarna T. Developing [60]Fullerene Nanomaterials for Better Photodynamic Treatment of Non-Melanoma Skin Cancers. ACS Biomater Sci Eng 2020; 6:5930-5940. [PMID: 33320587 DOI: 10.1021/acsbiomaterials.0c00932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin cancer is the most common cancer in the U.S.A. and Europe. Its subtype, squamous skin carcinoma (SCC), if allowed to grow, has the potential to metastasize and can become deadly. Currently, carbon nanomaterials are being developed to treat cancer due to their attractive physicochemical and biological properties such as an enhanced permeability effect and their ability to produce reactive oxygen species. Here, we describe the synthesis of two water-soluble aminofullerenes (MonoaminoC60 and HexakisaminoC60), which were evaluated as novel [60]fullerene based photosentizers exhibiting anticancer properties. Moreover, the previously described neutral glycofullerene GF1 and its peracetylated lipophilic precursor MMS48 were compared with the aminofullerenes for their ability to generate reactive oxygen species and oxidize lipids. Remarkably, the generation of singlet oxygen and a superoxide radical by HexakisaminoC60 was found to be markedly elevated in the presence of bovine serum albumin and NADH, respectively. Mechanistic studies of lipid peroxidation using cholesterol as a unique reporter molecule revealed that although all four fullerene nanomaterials primarily generated singlet oxygen, superoxide anion was also formed, which suggest a mixed mechanism of action (in which Type I and Type II photochemistry is involved). The [60]fullerene derivative HexakisaminoC60 was also studied for its phototoxicity in squamous skin cancer cell line (A431) using the MTT test and propidium iodide staining.
Collapse
Affiliation(s)
- Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Grzegorz Szewczyk
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Olga Krzysztyńska-Kuleta
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Julia Korzuch
- Institute of Chemistry, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pulku Piechoty 1A, Chorzów 41-500, Poland.,Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Katowice 40-007, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
7
|
Hazarika Z, Jha AN. Computational Analysis of the Silver Nanoparticle-Human Serum Albumin Complex. ACS OMEGA 2020; 5:170-178. [PMID: 31956763 PMCID: PMC6963898 DOI: 10.1021/acsomega.9b02340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Drug delivery in excess concentrations and at not-specified sites inside the human body adversely affects the body and gives rise to other diseases. Several methods have been developed to deliver the drugs in required amounts and at specific targets. Nanoparticle-mediated drug delivery is one such approach and has gained success at primary levels. The effect of nanoparticles on the human body needs important apprehension, and it has been unraveled by assessing the protein-nanoparticle interactions. Here, we have measured the impact of silver nanoparticles (AgNPs) on the human serum albumin (HSA) structure and function with the help of all-atom molecular dynamics simulations (MDS). HSA is a transport protein, and any change in the structure may obstruct its function. The post MD analyses showed that the NP interacts with HSA and the conjugated system got stabilized with time evolution of trajectories. The present investigation confirms that the AgNP interacts with HSA without affecting its tertiary and secondary structures and in turn the protein function as well. AgNP application is recommended in transporting conjugated drug molecules as it has no adverse effect on serum proteins. Since HSA is present in the circulatory system, it may open various applications of AgNPs in the biomedical field.
Collapse
|
8
|
Casalini T, Limongelli V, Schmutz M, Som C, Jordan O, Wick P, Borchard G, Perale G. Molecular Modeling for Nanomaterial-Biology Interactions: Opportunities, Challenges, and Perspectives. Front Bioeng Biotechnol 2019; 7:268. [PMID: 31681746 PMCID: PMC6811494 DOI: 10.3389/fbioe.2019.00268] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Injection of nanoparticles (NP) into the bloodstream leads to the formation of a so-called "nano-bio" interface where dynamic interactions between nanoparticle surfaces and blood components take place. A common consequence is the formation of the protein corona, that is, a network of adsorbed proteins that can strongly alter the surface properties of the nanoparticle. The protein corona and the resulting structural changes experienced by adsorbed proteins can lead to substantial deviations from the expected cellular uptake as well as biological responses such as NP aggregation and NP-induced protein fibrillation, NP interference with enzymatic activity, or the exposure of new antigenic epitopes. Achieving a detailed understanding of the nano-bio interface is still challenging due to the synergistic effects of several influencing factors like pH, ionic strength, and hydrophobic effects, to name just a few. Because of the multiscale complexity of the system, modeling approaches at a molecular level represent the ideal choice for a detailed understanding of the driving forces and, in particular, the early events at the nano-bio interface. This review aims at exploring and discussing the opportunities and perspectives offered by molecular modeling in this field through selected examples from literature.
Collapse
Affiliation(s)
- Tommaso Casalini
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana (USI), Lugano, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mélanie Schmutz
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Genève, Switzerland
| | - Peter Wick
- Laboratory for Particles – Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Genève, Switzerland
| | - Giuseppe Perale
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Wien, Austria
| |
Collapse
|
9
|
Krumkacheva OA, Timofeev IO, Politanskaya LV, Polienko YF, Tretyakov EV, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Chubarov AS, Bagryanskaya EG, Fedin MV. Triplet Fullerenes as Prospective Spin Labels for Nanoscale Distance Measurements by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olesya A. Krumkacheva
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Ivan O. Timofeev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Larisa V. Politanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Yuliya F. Polienko
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Evgeny V. Tretyakov
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Dmitry V. Trukhin
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Victor M. Tormyshev
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Alexey S. Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Elena G. Bagryanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Matvey V. Fedin
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| |
Collapse
|
10
|
Krumkacheva OA, Timofeev IO, Politanskaya LV, Polienko YF, Tretyakov EV, Rogozhnikova OY, Trukhin DV, Tormyshev VM, Chubarov AS, Bagryanskaya EG, Fedin MV. Triplet Fullerenes as Prospective Spin Labels for Nanoscale Distance Measurements by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:13271-13275. [PMID: 31322814 DOI: 10.1002/anie.201904152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Indexed: 11/11/2022]
Abstract
Precise nanoscale distance measurements by pulsed electron paramagnetic resonance (EPR) spectroscopy play a crucial role in structural studies of biomolecules. The properties of the spin labels used in this approach determine the sensitivity limits, attainable distances, and proximity to biological conditions. Herein, we propose and validate the use of photoexcited fullerenes as spin labels for pulsed dipolar (PD) EPR distance measurements. Hyperpolarization and the narrower spectrum of fullerenes compared to other triplets (e.g., porphyrins) boost the sensitivity, and superior relaxation properties allow PD EPR measurements up to a near-room temperature. This approach is demonstrated using fullerene-nitroxide and fullerene-triarylmethyl pairs, as well as a supramolecular complex of fullerene with nitroxide-labeled protein. Photoexcited triplet fullerenes can be considered as new spin labels with outstanding spectroscopic properties for future structural studies of biomolecules.
Collapse
Affiliation(s)
- Olesya A Krumkacheva
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ivan O Timofeev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Larisa V Politanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yuliya F Polienko
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Evgeny V Tretyakov
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Olga Yu Rogozhnikova
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Dmitry V Trukhin
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Victor M Tormyshev
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Elena G Bagryanskaya
- N.N.Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Wan Y, Guan S, Qian M, Huang H, Han F, Wang S, Zhang H. Structural basis of fullerene derivatives as novel potent inhibitors of protein acetylcholinesterase without catalytic active site interaction: insight into the inhibitory mechanism through molecular modeling studies. J Biomol Struct Dyn 2019; 38:410-425. [DOI: 10.1080/07391102.2019.1576543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yongfeng Wan
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Guan
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, Jilin, China
| | - Mengdan Qian
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, China
| | - Houhou Huang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Fei Han
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Hao Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Simonelli F, Rossi G, Monticelli L. Role of Ligand Conformation on Nanoparticle-Protein Interactions. J Phys Chem B 2019; 123:1764-1769. [PMID: 30698447 PMCID: PMC6469838 DOI: 10.1021/acs.jpcb.8b11204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Engineered
biomedical nanoparticles (NPs) administered via intravenous
routes are prone to associate to serum proteins. The protein corona
can mask the NP surface functionalization and hamper the delivery
of the NP to its biological target. The design of corona-free NPs
relies on our understanding of the chemical-physical features of the
NP surface driving the interaction with serum proteins. Here, we address,
by computational means, the interaction between human serum albumin
(HSA) and a prototypical monolayer-protected Au nanoparticle. We show
that both the chemical composition (charge, hydrophobicity) and the
conformational preferences of the ligands decorating the NP surface
affect the NP propensity to bind HSA.
Collapse
Affiliation(s)
- Federica Simonelli
- Physics Department , University of Genoa , Via Dodecaneso 33 , 16146 Genoa , Italy
| | - Giulia Rossi
- Physics Department , University of Genoa , Via Dodecaneso 33 , 16146 Genoa , Italy
| | - Luca Monticelli
- MMSB, UMR 5086 CNRS, Universitè de Lyon , 7, Passage du Vercors , 69007 Lyon , France
| |
Collapse
|
13
|
Hosseinzadeh G, Maghari A, Farnia SMF, Moosavi-Movahedi AA. Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation. J Biomol Struct Dyn 2017; 36:3623-3635. [DOI: 10.1080/07391102.2017.1396254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ghader Hosseinzadeh
- School of Chemistry, University of Tehran, Tehran, Iran
- Department of Polymer Science and Engineering, University of Bonab, Bonab, Iran
| | - Ali Maghari
- School of Chemistry, University of Tehran, Tehran, Iran
| | | | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Hathout RM, El-Ahmady SH, Metwally AA. Curcumin or bisdemethoxycurcumin for nose-to-brain treatment of Alzheimer disease? A bio/chemo-informatics case study. Nat Prod Res 2017; 32:2873-2881. [PMID: 29022380 DOI: 10.1080/14786419.2017.1385017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current study introduces a new idea of utilising several bio/chemoinformatics tools in comparing two bio-similar natural molecules viz. curcumin and bisdemethoxycurcumin (BDMC) in order to select a potential nose-to-brain remedy for Alzheimer disease. The comparison comprised several bio/chemo informatics tools. It encompassed all levels starting from loading the drug in a certain carrier; PLGA nanoparticles, to the biopharmaceutical level investigating the interaction with mucin and inhibition of P-gp blood-brain barrier efflux pumps. Finally, the therapeutic level was investigated by studying the interaction with pharmacological targets such as amyloid peptide plaques and cyclooxygenase2 enzyme responsible for the inflammatory reactions of the studied disease. The comparison revealed the superiority of curcumin over BDMC. Five new analogues were also hypothesised where diethoxybisdemethoxycurcumin was recommended as a superior molecule. This work introduced the virtual utilisation of bio/chemo informatics tools as a reliable and economic alternative to the exhausting and resources-consuming wet-lab experimentation.
Collapse
Affiliation(s)
- Rania M Hathout
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Ain Shams University , Cairo , Egypt.,b Faculty of Computer and Information Sciences , Bioinformatics Program, Ain Shams University , Cairo , Egypt.,c Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Technology , German University in Cairo (GUC) , Cairo , Egypt
| | - Sherweit H El-Ahmady
- d Faculty of Pharmacy, Department of Pharmacognosy , Ain Shams University , Cairo , Egypt
| | - AbdelKader A Metwally
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
15
|
Khammari A, Saboury AA, Karimi-Jafari MH, Khoobi M, Ghasemi A, Yousefinejad S, Abou-Zied OK. Insights into the molecular interaction between two polyoxygenated cinnamoylcoumarin derivatives and human serum albumin. Phys Chem Chem Phys 2017; 19:10099-10115. [DOI: 10.1039/c7cp00681k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Drug–protein interactions based on the thermodynamics approach, curve resolution analysis and computational methods at molecular levels.
Collapse
Affiliation(s)
- Anahita Khammari
- Institute of Biochemistry and Biophysics and Center of Excellence in Biothermodynamics
- University of Tehran
- Tehran
- Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics and Center of Excellence in Biothermodynamics
- University of Tehran
- Tehran
- Iran
| | | | - Mehdi Khoobi
- Department of Medicinal Chemistry
- Faculty of Pharmacy and Pharmaceutical Science Research Center
- Tehran University of Medical Science
- Tehran
- Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics and Center of Excellence in Biothermodynamics
- University of Tehran
- Tehran
- Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences
- School of Health
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Osama K. Abou-Zied
- Department of Chemistry
- Faculty of Science
- Sultan Qaboos University
- Muscat
- Sultanate of Oman
| |
Collapse
|
16
|
Richarz AN, Avramopoulos A, Benfenati E, Gajewicz A, Golbamaki Bakhtyari N, Leonis G, Marchese Robinson RL, Papadopoulos MG, Cronin MT, Puzyn T. Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity in the NanoPUZZLES Project. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:303-324. [PMID: 28168672 DOI: 10.1007/978-3-319-47754-1_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The particular properties of nanomaterials have led to their rapidly increasing use in diverse fields of application. However, safety assessment is not keeping pace and there are still gaps in the understanding of their hazards. Computational models predicting nanotoxicity, such as (quantitative) structure-activity relationships ((Q)SARs), can contribute to safety evaluation, in line with general efforts to apply alternative methods in chemical risk assessment. Their development is highly dependent on the availability of reliable and high quality experimental data, both regarding the compounds' properties as well as the measured toxic effects. In particular, "nano-QSARs" should take the nano-specific characteristics into account. The information compiled needs to be well organized, quality controlled and standardized. Integrating the data in an overarching, structured data collection aims to (a) organize the data in a way to support modelling, (b) make (meta)data necessary for modelling available, and (c) add value by making a comparison between data from different sources possible.Based on the available data, specific descriptors can be derived to parameterize the nanomaterial-specific structure and physico-chemical properties appropriately. Furthermore, the interactions between nanoparticles and biological systems as well as small molecules, which can lead to modifications of the structure of the active nanoparticles, need to be described and taken into account in the development of models to predict the biological activity and toxicity of nanoparticles. The EU NanoPUZZLES project was part of a global cooperative effort to advance data availability and modelling approaches supporting the characterization and evaluation of nanomaterials.
Collapse
Affiliation(s)
- Andrea-Nicole Richarz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Aggelos Avramopoulos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Agnieszka Gajewicz
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Nazanin Golbamaki Bakhtyari
- Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Georgios Leonis
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | - Manthos G Papadopoulos
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Mark Td Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
17
|
Trozzi F, Marforio TD, Bottoni A, Zerbetto F, Calvaresi M. Engineering the Fullerene-protein Interface by Computational Design: The Sum is More than its Parts. Isr J Chem 2016. [DOI: 10.1002/ijch.201600127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesco Trozzi
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Tainah Dorina Marforio
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Andrea Bottoni
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician”; Alma Mater Studiorum; Università di Bologna; via F. Selmi 2 40126 Bologna Italy
| |
Collapse
|
18
|
Yang Z, Zhou T, Cheng Y, Li M, Tan X, Xu F. Weakening Impact of Excessive Human Serum Albumin (eHSA) on Cisplatin and Etoposide Anticancer Effect in C57BL/6 Mice with Tumor and in Human NSCLC A549 Cells. Front Pharmacol 2016; 7:434. [PMID: 27895586 PMCID: PMC5108922 DOI: 10.3389/fphar.2016.00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022] Open
Abstract
Excessive human serum albumin (eHSA) impact on anticancer effects is inconsistent. We explored the outcome of cisplatin (DDP)/etoposide (VP-16) plus eHSA in vivo and in vitro. C57BL/6 mice with tumor were used to compare the efficacy of DDP/VP-16 alone and DDP/VP-16+eHSA. Blood albumin was measured to confirm whether eHSA elevate its level. Western blotting assay were used to measure the expression of ERCC1/TOP2A in tumor tissues. Cell proliferation, mRNA, and protein expression of ERCC1/TOP2A were also assayed to compare two groups in A549 cells. Furthermore we evaluated eHSA impact on cell proliferation in RNAi targeting ERCC1/TOP2A in A549 cells, respectively. eHSA reduced the anticancer effect of DDP/VP-16 without altering albumin level, increased protein expression of ERCC1/TOP2A, respectively in mice. Similarly, eHSA increased mRNA and proteins expression of ERCC1/TOP2A in A549 cells. In RNAi A549 cells, however, eHSA no longer weakened but enhanced the anticancer effect of DDP, while no longer altered the effect of VP-16. Our findings suggested that eHSA weaken the anticancer effect of DDP/VP-16 via up-regulating ERCC1/TOP2A expression, respectively. Further molecular mechanism studies are warranted to investigate whether eHSA is not conducive to lung cancer chemotherapy.
Collapse
Affiliation(s)
- Zhen Yang
- Fengxian Hospital Graduate Training Base, Jinzhou Medical UniversityShanghai, China; Graduate School, Jinzhou Medical UniversityLiaoning, China
| | - Ting Zhou
- Department of Pharmacy, Fengxian Hospital, Southern Medical University Shanghai, China
| | - Yuanchi Cheng
- Graduate School, Jinzhou Medical University Liaoning, China
| | - Mingming Li
- Department of Pharmacy, Fengxian Hospital, Southern Medical University Shanghai, China
| | - Xianglin Tan
- Rutgers Cancer Institute of New Jersey, The State University of New Jersey New Brunswick, NJ, USA
| | - Feng Xu
- Fengxian Hospital Graduate Training Base, Jinzhou Medical UniversityShanghai, China; Department of Pharmacy, Fengxian Hospital, Southern Medical UniversityShanghai, China; Department of Pharmacy, 6th People's Hospital South Campus, Shanghai Jiaotong UniversityShanghai, China
| |
Collapse
|
19
|
Qian M, Shan Y, Guan S, Zhang H, Wang S, Han W. Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies. J Chem Inf Model 2016; 56:2024-2034. [PMID: 27649447 DOI: 10.1021/acs.jcim.6b00482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has become an outstanding target for the treatment of diabetes and obesity. Recent research has demonstrated that some fullerene derivatives serve as a new nanoscale-class of potent inhibitors of PTP1B, but the specific mechanism remains unclear. Several molecular modeling methods (molecular docking, molecular dynamics simulations, and molecular mechanics/generalized Born surface area calculations) were integrated to provide insight into the binding mode and inhibitory mechanism of the new class of fullerene inhibitors. The results reveal that PTP1B with an open WPD loop is more susceptible to the combination with the fullerene inhibitor because of their comparable shapes and sizes. When the WPD loop fluctuates to the open conformation, the inhibitor falls into the active pocket and induces conformational rotation of the WPD loop. This rotation is closely related to the reduction of the catalytic activity of PTP1B. In addition, it is suggested that compound 1, like compound 2, is a competitive inhibitor since it blocks the active site to prevent the binding of the substrate. The high binding affinity of fullerene-based compounds and the transition of the WPD loop, caused by the specific structural property of the hydrophobic fullerene core and the appended polar groups, make these fullerene derivatives efficient competitive inhibitors. The theoretical results provide useful clues for further investigation of the noval inhibitors of PTP1B at the nanoscale.
Collapse
Affiliation(s)
- Mengdan Qian
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| | - Yaming Shan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University , Changchun 130012, China
| | - Shanshan Guan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University , Changchun 130012, China
| | - Hao Zhang
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| | - Song Wang
- Institute of Theoretical Chemistry, Jilin University , Changchun 130023, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University , Changchun 130012, China.,Department of Computer Science, C. S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|