1
|
Kumar A, Renuka CG. Experimental and Theoretical Rotational Diffusion Studies of 7DM4M1M1,8, N-2(1H)-one and 7A4T2H1B-2-one in Series of Alcohol Solvents: Stoke's-Einstein-Debye and Alavi-Waldeck Models. J Fluoresc 2024:10.1007/s10895-024-03707-8. [PMID: 38689202 DOI: 10.1007/s10895-024-03707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Rotational diffusion studies of two solutes 7-(dimethylamino)-4-methoxy-1-methyl-1,8-naphthyridin-2(1H)-one (7DM4M1M1,8, N-2(1H)-one) and 7-amino-4-(trifluoromethyl)-2H-1-benzopyran-2-one (7A4T2H1B-2-one) having equal volumes but different chemical natures are studied in series of alcohol solvents at 303 K using steady-state methods. HOMO-LUMO, Electron density, Molecular electrostatic potential (MEP), etc., are obtained from computational calculations using Gaussian 09 software. Rotational reorientation times of 7DM4M1M1,8, N-2(1H)-one solute molecule is found to be less than 7A4T2H1B-2-one solute molecule indicates it rotates slowly in chosen solvents. Stoke's-Einstein-Debye (SED) model with stick boundary conditions for the 7A4T2H1B-2-one solute molecule is modeled to describe mechanical friction. Polar solutes along with mechanical friction also experience dielectric friction. Both these frictions being non-separable, the Alavi-Waldeck (AW) model is studied for dielectric friction contribution to the total friction solute experiences in solvents. AW model effectively explains the observed dielectric friction in alcohol solvents.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Physics, Government First Grade College, Sindhanur, 584128, India
- P.G. Department of Physics, Shri Siddeshwar Government First Grade College, and P.G. Study Center, Nargund, 582207, India
| | - C G Renuka
- Department of Physics, Bangalore University, Bengaluru, 560065, India.
| |
Collapse
|
2
|
Photophysics and rotational dynamics of Nile red in room temperature ionic liquid (RTIL) and RTIL-cosolvents binary mixtures. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Wang Y, Jarošová R, Swain GM, Blanchard GJ. Characterizing the Magnitude and Structure-Dependence of Free Charge Density Gradients in Room-Temperature Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3038-3045. [PMID: 32148037 DOI: 10.1021/acs.langmuir.0c00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have reported previously on the existence of charge-induced long-range organization in the room-temperature ionic liquid (RTIL), BMIM+BF4-. The induced organization is in the form of a free charge density gradient (ρf) that exists over ca. 100 μm into the RTIL in contact with a charged surface. The fluorescence anisotropy decay of a trace-level charged chromophore in the RTIL is measured as a function of distance from the indium-doped tin oxide support surface to probe this free charge density gradient. We report here on the characterization of the free charge density gradient in five different imidazolium RTILs and use these data to evaluate the magnitude of the induced free charge density gradient. Both the extent and magnitude of this gradient depend on the chemical structures of the cationic and anionic constituents of the RTIL used. Control over the magnitude of ρf has implications for the utility of RTILs for a host of applications that remain to be explored fully.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Romana Jarošová
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Greg M Swain
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
4
|
An Experimental and Theoretical Test of Dielectric Friction Models Using Rotational Diffusion of 7-Diethylamino-2-H-1-Benzopyran-2-One in Non-associative Solvents. J Fluoresc 2019; 29:899-909. [PMID: 31273534 DOI: 10.1007/s10895-019-02402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
The rotational re-orientations times of the 7-DHB dye molecule have been examined in non-associative solvents (DMSO and Octanenitrile) by varying the temperature, by employing the Steady-State Fluorescence Depolarisation and Time-Correlated Single Photon Counting (TCSPC) techniques. Rotational re-orientations time values in DMSO are found larger by a factor of 1.136 than octanenitrile, which indicates that 7-DHB laser dye is experiencing higher friction in DMSO than octanenitrile. To determine mechanical friction Stokes Einstein's Debye theory (SED) -with a stick, slip boundary conditions parameters are used and found an interesting super slip trend. Point dipole models as Nee-Zwanzig (NZ) and van der Zwan-Hynes (ZH) fail to explain experimental dielectric friction observed trends. Alavi-Waldeck model successfully explains the observed dielectric friction trend in non-associative solvents.
Collapse
|
5
|
Kumar A, Nadaf Y, Renuka C, Ananthamurthy S. Investigations of mechanical and dielectric friction: Rotational reorientation studies of 7-DHB, Qu-390, and C-6H molecules in polar solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Kumar A, Renuka C, Nadaf Y. Fluorescence relaxation dynamics in excited electronic states of -(1,3-benzothiazol-2-yl)-7-(diethylamino) chromen-2-one (3-BDC) in alcohols. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Kumar A, Nadaf YF, Renuka CG. Rotational Diffusion of Medium Sized 7-[Diethylamino]-2H-1-Benzopyran-2-One Molecule in Alcohols: Study of Temperature and Solvent Viscosity Effect. J Fluoresc 2019; 29:587-597. [PMID: 30949877 DOI: 10.1007/s10895-019-02370-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 11/30/2022]
Abstract
The rotational re-orientations times of the 7-[diethylamino]-2H-1-benzopyran-2-one (7-DHB) dye molecule have been examined in ethanol and octanol solvents when macroscopic solvent viscosity parameter is varied by varying the temperature, by employing the steady-state fluorescence depolarisation and Time-Correlated Single Photon Counting (TCSPC) techniques. Experimental observation shows that 7-DHB probe is experiencing higher friction in octanol compared to ethanol and rotates slower by a factor of 7.3. The hydrodynamic Stokes Einstein's Debye theory (SED) with a stick, slip boundary conditions parameters, quasi-hydrodynamic models (Dote-Kivelson-Schwartz and Geirer-Wirtz) were used to determine mechanical friction and found an interesting towards super slip trend. Dielectric frictional theories of point dipole, Nee-Zwanzig and van der Zwan-Hynes both models fail to describe experimentally observe dielectric friction trends. Evidently, both hydrodynamic and dielectric models failed to explain the examined behavior, even in the qualitative way in alcohols.
Collapse
Affiliation(s)
- Anil Kumar
- P.G. Department of Physics, Sri Siddeshwara Govt., First Grade College, Naragund, 582207, India
| | - Y F Nadaf
- Department of Physics and Research Center, Maharani Science College for Women, Bengaluru, 560001, India
| | - C G Renuka
- Department of Physics, Jnanabharathi campus, Bangalore University, Bengaluru, 560056, India.
| |
Collapse
|
8
|
Maurya R, Naithani S, Bandyopadhyay D, Choudhury N, Dutt GB. Is Solute Rotation in an Ionic Liquid Influenced by the Addition of Glucose? J Phys Chem B 2017; 121:10965-10973. [PMID: 29125769 DOI: 10.1021/acs.jpcb.7b09888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence anisotropy measurements and molecular dynamics (MD) simulations have been performed to understand the specific interactions of two structurally similar nondipolar solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), with neat 1-butyl-3-methylimidazolium dicyanamide ([BMIM][N(CN)2]) and also in the presence of glucose. It has been observed that the measured reorientation times of DMDPP in neat [BMIM][N(CN)2] follow the predictions of the Stokes-Einstein-Debye hydrodynamic theory with slip boundary condition. Addition of glucose (0.075 and 0.15 mole fraction) has no bearing on the rotational diffusion of the solute apart from the viscosity related effects. In contrast, the reorientation times of DPP in neat [BMIM][N(CN)2] obey stick boundary condition as the hydrogen bond donating solute experiences specific interactions with the dicyanamide anion. No influence of the additive can be noticed on the rotational diffusion of DPP at 0.075 mole fraction of glucose. However, at 0.15 mole fraction of glucose, the reorientation times of the solute at a given viscosity and temperature decrease by 15-40% compared to those obtained in the neat ionic liquid. MD simulations indicate that each DPP molecule hydrogen bonds with two dicyanamide anions in neat ionic liquid. The simulations also reveal that, at 0.15 mole fraction of glucose, the concentration of anions hydrogen bonded to glucose increases significantly; therefore, the percentage of solute molecules that can form hydrogen bonds with two dicyanamide anions decreases to 84, which leads to faster rotation of DPP.
Collapse
Affiliation(s)
- Rajan Maurya
- Atma Ram Sanatan Dharma College , Dhaula Kuan, New Delhi 110 021, India
| | | | | | | | | |
Collapse
|
9
|
Rumble CA, Uitvlugt C, Conway B, Maroncelli M. Solute Rotation in Ionic Liquids: Size, Shape, and Electrostatic Effects. J Phys Chem B 2017; 121:5094-5109. [DOI: 10.1021/acs.jpcb.7b01704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher A. Rumble
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Caleb Uitvlugt
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brian Conway
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Rumble CA, Kaintz A, Yadav SK, Conway B, Araque JC, Baker GA, Margulis C, Maroncelli M. Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium. J Phys Chem B 2016; 120:9450-67. [DOI: 10.1021/acs.jpcb.6b06715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher A. Rumble
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anne Kaintz
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sharad K. Yadav
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian Conway
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Juan C. Araque
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Claudio Margulis
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Mark Maroncelli
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Zanatta M, Girard AL, Marin G, Ebeling G, dos Santos FP, Valsecchi C, Stassen H, Livotto PR, Lewis W, Dupont J. Confined water in imidazolium based ionic liquids: a supramolecular guest@host complex case. Phys Chem Chem Phys 2016; 18:18297-304. [DOI: 10.1039/c6cp03112a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Traces of water in some ionic liquids can be regarded as a guest@host supramolecular structure even when diluted in solvents with high dielectric constants.
Collapse
Affiliation(s)
- Marcileia Zanatta
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Anne-Lise Girard
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Graciane Marin
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Gunter Ebeling
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | | | - Chiara Valsecchi
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Hubert Stassen
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - Paolo R. Livotto
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| | - William Lewis
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Jairton Dupont
- Institute of Chemistry
- UFRGS
- Avenida Bento Gonçalves
- 9500 Porto Alegre
- Brazil
| |
Collapse
|
12
|
Nanda R. Unusual linear dependency of viscosity with temperature in ionic liquid/water mixtures. Phys Chem Chem Phys 2016; 18:25801-25805. [DOI: 10.1039/c6cp05257f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unusual linear scaling of the self-diffusion coefficient and viscosity leads to the violation of the SE and FSE equations and shows dynamic heterogeneity.
Collapse
Affiliation(s)
- R. Nanda
- Department of Physical Science
- Indian Institute of Science Education and Research
- Mohali
- India
| |
Collapse
|
13
|
Prabhu SR, Dutt GB. Rotational Diffusion of Nonpolar and Ionic Solutes in 1-Alkyl-3-methylimidazolium Tetrafluoroborate–LiBF4 Mixtures: Does the Electrolyte Induce the Structure-Making or Structure-Breaking Effect? J Phys Chem B 2015; 119:15040-5. [DOI: 10.1021/acs.jpcb.5b10047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sugosh R. Prabhu
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - G. B. Dutt
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|