1
|
Jacob MH, D’Souza RN, Lazar AI, Nau WM. Diffusion-Enhanced Förster Resonance Energy Transfer in Flexible Peptides: From the Haas-Steinberg Partial Differential Equation to a Closed Analytical Expression. Polymers (Basel) 2023; 15:polym15030705. [PMID: 36772006 PMCID: PMC9919848 DOI: 10.3390/polym15030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In the huge field of polymer structure and dynamics, including intrinsically disordered peptides, protein folding, and enzyme activity, many questions remain that cannot be answered by methodology based on artificial intelligence, X-ray, or NMR spectroscopy but maybe by fluorescence spectroscopy. The theory of Förster resonance energy transfer (FRET) describes how an optically excited fluorophore transfers its excitation energy through space to an acceptor moiety-with a rate that depends on the distance between donor and acceptor. When the donor and acceptor moiety are conjugated to different sites of a flexible peptide chain or any other linear polymer, the pair could in principle report on chain structure and dynamics, on the site-to-site distance distribution, and on the diffusion coefficient of mutual site-to-site motion of the peptide chain. However, the dependence of FRET on distance distribution and diffusion is not defined by a closed analytical expression but by a partial differential equation (PDE), by the Haas-Steinberg equation (HSE), which can only be solved by time-consuming numerical methods. As a second complication, time-resolved FRET measurements have thus far been deemed necessary. As a third complication, the evaluation requires a computationally demanding but indispensable global analysis of an extended experimental data set. These requirements have made the method accessible to only a few experts. Here, we show how the Haas-Steinberg equation leads to a closed analytical expression (CAE), the Haas-Steinberg-Jacob equation (HSJE), which relates a diffusion-diagnosing parameter, the effective donor-acceptor distance, to the augmented diffusion coefficient, J, composed of the diffusion coefficient, D, and the photophysical parameters that characterize the used FRET method. The effective donor-acceptor distance is easily retrieved either through time-resolved or steady-state fluorescence measurements. Any global fit can now be performed in seconds and minimizes the sum-of-square difference between the experimental values of the effective distance and the values obtained from the HSJE. In summary, the HSJE can give a decisive advantage in applying the speed and sensitivity of FRET spectroscopy to standing questions of polymer structure and dynamics.
Collapse
|
2
|
Song J, Gomes GN, Shi T, Gradinaru CC, Chan HS. Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins. Biophys J 2017; 113:1012-1024. [PMID: 28877485 DOI: 10.1016/j.bpj.2017.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
A mathematico-physically valid formulation is required to infer properties of disordered protein conformations from single-molecule Förster resonance energy transfer (smFRET). Conformational dimensions inferred by conventional approaches that presume a homogeneous conformational ensemble can be unphysical. When all possible-heterogeneous as well as homogeneous-conformational distributions are taken into account without prejudgment, a single value of average transfer efficiency 〈E〉 between dyes at two chain ends is generally consistent with highly diverse, multiple values of the average radius of gyration 〈Rg〉. Here we utilize unbiased conformational statistics from a coarse-grained explicit-chain model to establish a general logical framework to quantify this fundamental ambiguity in smFRET inference. As an application, we address the long-standing controversy regarding the denaturant dependence of 〈Rg〉 of unfolded proteins, focusing on Protein L as an example. Conventional smFRET inference concluded that 〈Rg〉 of unfolded Protein L is highly sensitive to [GuHCl], but data from SAXS suggested a near-constant 〈Rg〉 irrespective of [GuHCl]. Strikingly, our analysis indicates that although the reported 〈E〉 values for Protein L at [GuHCl] = 1 and 7 M are very different at 0.75 and 0.45, respectively, the Bayesian Rg2 distributions consistent with these two 〈E〉 values overlap by as much as 75%. Our findings suggest, in general, that the smFRET-SAXS discrepancy regarding unfolded protein dimensions likely arise from highly heterogeneous conformational ensembles at low or zero denaturant, and that additional experimental probes are needed to ascertain the nature of this heterogeneity.
Collapse
Affiliation(s)
- Jianhui Song
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China; Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory-Neal Gomes
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Claudiu C Gradinaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Hue Sun Chan
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Peulen TO, Opanasyuk O, Seidel CAM. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. J Phys Chem B 2017; 121:8211-8241. [PMID: 28709377 PMCID: PMC5592652 DOI: 10.1021/acs.jpcb.7b03441] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Förster resonance energy transfer
(FRET) measurements from
a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the
structure and dynamics of DA labeled macromolecules. Accurate descriptions
of FRET measurements by molecular models are complicated because the
fluorophores are usually coupled to the macromolecule via flexible
long linkers allowing for diffusional exchange between multiple states
with different fluorescence properties caused by distinct environmental
quenching, dye mobilities, and variable DA distances. It is often
assumed for the analysis of fluorescence intensity decays that DA
distances and D quenching are uncorrelated (homogeneous quenching
by FRET) and that the exchange between distinct fluorophore states
is slow (quasistatic). This allows us to introduce the FRET-induced
donor decay, εD(t), a function solely
depending on the species fraction distribution of the rate constants
of energy transfer by FRET, for a convenient joint analysis of fluorescence
decays of FRET and reference samples by integrated graphical and analytical
procedures. Additionally, we developed a simulation toolkit to model
dye diffusion, fluorescence quenching by the protein surface, and
FRET. A benchmark study with simulated fluorescence decays of 500
protein structures demonstrates that the quasistatic homogeneous model
works very well and recovers for single conformations the average
DA distances with an accuracy of < 2%. For more complex
cases, where proteins adopt multiple conformations with significantly
different dye environments (heterogeneous case), we introduce a general
analysis framework and evaluate its power in resolving heterogeneities
in DA distances. The developed fast simulation methods, relying on
Brownian dynamics of a coarse-grained dye in its sterically accessible
volume, allow us to incorporate structural information in the decay
analysis for heterogeneous cases by relating dye states with protein
conformations to pave the way for fluorescence and FRET-based dynamic
structural biology. Finally, we present theories and simulations to
assess the accuracy and precision of steady-state and time-resolved
FRET measurements in resolving DA distances on the single-molecule
and ensemble level and provide a rigorous framework for estimating
approximation, systematic, and statistical errors.
Collapse
Affiliation(s)
- Thomas-Otavio Peulen
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Oleg Opanasyuk
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Sha Y, Xu Y, Qi D, Wan Y, Li L, Li H, Wang X, Xue G, Zhou D. Synthesis of Heterotelechelic α,ω-Dye-Labeled Polymer and Energy Transfer between the Chain Ends. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ye Sha
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
| | - Yunlong Xu
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Dongliang Qi
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
| | - Yuanxin Wan
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
| | - Linling Li
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
| | - Hong Li
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210046, P. R. China
| | - Xiaoliang Wang
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
| | - Gi Xue
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
| | - Dongshan Zhou
- Department
of Polymer Science and Engineering, School of Chemistry and Chemical
Engineering, Key Laboratory of High Performance Polymer Materials
and Technology (Nanjing University), Ministry of Education, State
Key Laboratory of Coordination Chemistry, Nanjing National Laboratory
of Microstructure, Nanjing University, Nanjing 210093, P. R. China
- School
of Physical Science and Technology, Xinjiang Key Laboratory and Phase
Transitions and Microstructures in Condensed Matters, Yili Normal University, Yining 835000, P. R. China
| |
Collapse
|
5
|
Chin AF, Toptygin D, Elam WA, Schrank TP, Hilser VJ. Phosphorylation Increases Persistence Length and End-to-End Distance of a Segment of Tau Protein. Biophys J 2016; 110:362-371. [PMID: 26789759 DOI: 10.1016/j.bpj.2015.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered regions of proteins, which lack unique tertiary structure under physiological conditions, are enriched in phosphorylation sites and in significant local bias toward the polyproline II conformation. The overrepresented coincidence of this posttranslational regulatory signal and local conformational bias within unstructured regions raises a question: can phosphorylation serve to manipulate the conformational preferences of a disordered protein? In this study, we use time-resolved fluorescence resonance energy transfer and a, to our knowledge, novel data analysis method to directly measure the end-to-end distance distribution of a phosphorylatable peptide derived from the human microtubule associated protein tau. Our results show that phosphorylation at threonine or serine extends the end-to-end distance and increases the effective persistence length of the tested model peptides. Unexpectedly, the extension is independent of salt concentration, suggestive of a nonelectrostatic origin. The phosphorylation extension and stiffening effect provides a peptide-scale physical interpretation for the posttranslational regulation of the highly abundant protein-protein interactions found in disordered proteins, as well as a potential insight into the regulatory mechanism of the tau protein's microtubule binding activity.
Collapse
Affiliation(s)
- Alexander F Chin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Dmitri Toptygin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Travis P Schrank
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|