1
|
Cheng C, Hayashi S. Ab Initio Evaluation of the Redox Potential of Cytochrome c. J Chem Theory Comput 2021; 17:1194-1207. [PMID: 33459006 DOI: 10.1021/acs.jctc.0c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various biochemical activities of metabolism and biosynthesis are fulfilled by redox processes with explicit electron exchange, which furnish redox enzymes with high chemical reactivity. However, theoretical investigation of a redox process, which simultaneously involves a complex electronic change at a redox metal center and conformational reorganization of the surrounding protein environment coupled to the electronic change, requires computationally conflicting approaches, highly accurate quantum chemical calculations, and long-time molecular dynamics (MD) simulations, limiting the physicochemical understanding of biological redox processes. Here, we theoretically examined a redox process of cytochrome c by means of a hybrid molecular simulation technique, which enables one to consistently treat the redox center at the ab initio quantum chemistry level of theory and the protein reorganization with long-time MD simulations on the microsecond timescale. The calculations successfully evaluated a large absolute redox potential, 4.34 eV, with errors of only 0.03 to 0.34 eV to the experimental ones without any problem-specific empirical parameters. Through the long-time MD sampling, large and nonlinear reorganization of the protein environment was unveiled and the molecular determinants for the redox potential were identified. The present ab initio approach significantly expands the applicability of theoretical investigation to biological redox systems with more electronically complicated redox centers such as polynuclear transition metal complexes.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Tamura K, Sugimoto H, Shiro Y, Sugita Y. Chemo-Mechanical Coupling in the Transport Cycle of a Heme ABC Transporter. J Phys Chem B 2019; 123:7270-7281. [PMID: 31362510 DOI: 10.1021/acs.jpcb.9b04356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heme importer from pathogenic bacteria is a member of the ATP-binding cassette (ABC) transporter family, which uses the energy of ATP-binding and hydrolysis for extensive conformational changes. Previous studies have indicated that conformational changes after heme translocation are triggered by ATP-binding to nucleotide binding domains (NBDs) and then, in turn, induce conformational transitions of the transmembrane domains (TMDs). In this study, we applied a template-based iterative all-atom molecular dynamics (MD) simulation to predict the ATP-bound outward-facing conformation of the Burkholderia cenocepacia heme importer BhuUV-T. The resulting model showed a stable conformation of the TMD with the cytoplasmic gate in the closed state and the periplasmic gate in the open state. Furthermore, targeted MD simulation predicted the intermediate structure of an occluded form (Occ) with bound ATP, in which both ends of the heme translocation channel are closed. The MD simulation of the predicted Occ revealed that Ser147 on the ABC signature motifs (LSGG[Q/E]) of NBDs occasionally flips and loses the active conformation required for ATP-hydrolysis. The flipping motion was found to be coupled to the inter-NBD distance. Our results highlight the functional significance of the signature motif of ABC transporters in regulation of ATPase and chemo-mechanical coupling mechanism.
Collapse
Affiliation(s)
- Koichi Tamura
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiroshi Sugimoto
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan.,Synchrotron Radiation Life Science Instrumentation Team , RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan
| | - Yuji Sugita
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan.,Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| |
Collapse
|
3
|
Okumura H, Higashi M, Yoshida Y, Sato H, Akiyama R. Theoretical approaches for dynamical ordering of biomolecular systems. Biochim Biophys Acta Gen Subj 2017; 1862:212-228. [PMID: 28988931 DOI: 10.1016/j.bbagen.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. SCOPE OF REVIEW We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. MAJOR CONCLUSIONS The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. GENERAL SIGNIFICANCE These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Hisashi Okumura
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
| | - Masahiro Higashi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yuichiro Yoshida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Japan
| | - Ryo Akiyama
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Yonezawa K, Shimizu N, Kurihara K, Yamazaki Y, Kamikubo H, Kataoka M. Neutron crystallography of photoactive yellow protein reveals unusual protonation state of Arg52 in the crystal. Sci Rep 2017; 7:9361. [PMID: 28839266 PMCID: PMC5570954 DOI: 10.1038/s41598-017-09718-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Because of its high pKa, arginine (Arg) is believed to be protonated even in the hydrophobic environment of the protein interior. However, our neutron crystallographic structure of photoactive yellow protein, a light sensor, demonstrated that Arg52 adopts an electrically neutral form. We also showed that the hydrogen bond between the chromophore and Glu46 is a so-called low barrier hydrogen bond (LBHB). Because both the neutral Arg and LBHB are unusual in proteins, these observations remain controversial. To validate our findings, we carried out neutron crystallographic analysis of the E46Q mutant of PYP. The resultant structure revealed that the proportion of the cationic form is higher in E46Q than in WT, although the cationic and neutral forms of Arg52 coexist in E46Q. These observations were confirmed by the occupancy of the deuterium atom bound to the N η1 atom combined with an alternative conformation of the N(η2)D2 group comprising sp2 hybridisation. Based on these results, we propose that the formation of the LBHB decreases the proton affinity of Arg52, stabilizing the neutral form in the crystal.
Collapse
Affiliation(s)
- Kento Yonezawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kazuo Kurihara
- National Institutes for Quantum and Radiological Science and Technology (QST), 2-4 Oaza- Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Yoichi Yamazaki
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan. .,Comprehensive Research Organization for Science and Society, Research Center for Neutron Science and Technology, 162-1 Shirakata, Tokai, Ibaraki, 319-1106, Japan.
| |
Collapse
|
5
|
Hayashi S, Uchida Y, Hasegawa T, Higashi M, Kosugi T, Kamiya M. QM/MM Geometry Optimization on Extensive Free-Energy Surfaces for Examination of Enzymatic Reactions and Design of Novel Functional Properties of Proteins. Annu Rev Phys Chem 2017; 68:135-154. [DOI: 10.1146/annurev-physchem-052516-050827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;, , ,
| | - Yoshihiro Uchida
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;, , ,
| | - Taisuke Hasegawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;, , ,
| | - Masahiro Higashi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Takahiro Kosugi
- Research Center of Integrative Molecular Systems, Institute for Molecular Science, and Department of Structural Molecular Science, School of Physical Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;, , ,
| |
Collapse
|
6
|
Yang C, Kim SO, Kim Y, Yun SR, Choi J, Ihee H. Photocycle of Photoactive Yellow Protein in Cell-Mimetic Environments: Molecular Volume Changes and Kinetics. J Phys Chem B 2017; 121:769-779. [PMID: 28058827 DOI: 10.1021/acs.jpcb.6b13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using various spectroscopic techniques such as UV-visible spectroscopy, circular dichroism spectroscopy, NMR spectroscopy, small-angle X-ray scattering, transient grating, and transient absorption techniques, we investigated how cell-mimetic environments made by crowding influence the photocycle of photoactive yellow protein (PYP) in terms of the molecular volume change and kinetics. Upon addition of molecular crowding agents, the ratio of the diffusion coefficient of the blue-shifted intermediate (pB) to that of the ground species (pG) significantly changes from 0.92 and approaches 1.0. This result indicates that the molecular volume change accompanied by the photocycle of PYP in molecularly crowded environments is much smaller than that which occurs in vitro and that the pB intermediate under crowded environments favors a compact conformation due to the excluded volume effect. The kinetics of the photocycle of PYP in cell-mimetic environments is greatly decelerated by the dehydration, owing to the interaction between the protein and small crowding agents, but is barely affected by the excluded volume effect. The results lead to the inference that the signaling transducer of PYP may not necessarily utilize the conformational change of PYP to sense the signaling state.
Collapse
Affiliation(s)
- Cheolhee Yang
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Seong Ok Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Yonggwan Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - So Ri Yun
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| |
Collapse
|