1
|
Akhmetova AI, Yaminsky IV. High resolution imaging of viruses: Scanning probe microscopy and related techniques. Methods 2021; 197:30-38. [PMID: 34157416 DOI: 10.1016/j.ymeth.2021.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Scanning probe microscopy is a group of measurements that provides 3D visualization of viruses in different environmental conditions including liquids and air. Besides 3D topography it is possible to measure the properties like mechanical rigidity and stability, adhesion, tendency to crystallization, surface charge, etc. Choosing the right substrate and scanning parameters makes it much easier to obtain reliable data. Rational interpretation of experimental results should take into account possible artifacts, proper filtering and data presentation using specially designed software packages. Animal and human virus characterization is in the focus of many intensive studies because of their potential harm to higher organisms. The article focuses on high-resolution visualization of plant viruses. Tobacco mosaic virus, potato viruses X and B and others are not dangerous for the human being and are widely used in different applications such as vaccine preparation, construction of building units in nanotechnology and material science applications, nanoparticle production and delivery, and even metrology. The methods of virus's deposition, visualization, and consequent image processing and interpretation are described in details. Specific examples of viruses imaging are illustrated using the FemtoScan Online software, which has typical and all the necessary built-in functions for constructing three-dimensional images, their processing and analysis. Despite visible progress in visualizing the viruses using probe microscopy, many unresolved problems still remain. At present time the probe microscopy data on viruses is not systemized. There is no descriptive atlas of the images and morphology as revealed by this type of high resolution microscopy. It is worth emphasizing that new virus investigation methods will appear due to the progress of science.
Collapse
Affiliation(s)
- Assel I Akhmetova
- Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, GSP-1, Russia; Advanced Technologies Center, 4-5-47, Stroitelei str., Moscow, 119311, Russia
| | - Igor V Yaminsky
- Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, GSP-1, Russia; Advanced Technologies Center, 4-5-47, Stroitelei str., Moscow, 119311, Russia.
| |
Collapse
|
2
|
Sae-Ueng U, Bhunchoth A, Phironrit N, Treetong A, Sapcharoenkun C, Chatchawankanphanich O, Leartsakulpanich U, Chitnumsub P. C22 podovirus infectivity is associated with intermediate stiffness. Sci Rep 2020; 10:12604. [PMID: 32724109 PMCID: PMC7387534 DOI: 10.1038/s41598-020-69409-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Bacteriophages have potential for use as biological control agents (biocontrols) of pathogenic bacteria, but their low stability is limiting for their utilization as biocontrols. Understanding of the conditions conducive to storage of phages in which infectivity is maintained over long periods will be useful for their application as biocontrols. We employed a nanomechanical approach to study how external environmental factors affect surface properties and infectivity of the podovirus C22 phage, a candidate for biocontrol of Ralstonia solanacearum, the agent of bacterial wilt in crops. We performed atomic force microscopy (AFM)-based nano-indentation on the C22 phage in buffers with varying pH and ionic strength. The infectivity data from plaque assay in the same conditions revealed that an intermediate range of stiffness was associated with phage titer that remained consistently high, even after prolonged storage up to 182 days. The data are consistent with the model that C22 phage must adopt a metastable state for maximal infectivity, and external factors that alter the stiffness of the phage capsid lead to perturbation of this infective state.
Collapse
Affiliation(s)
- Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chaweewan Sapcharoenkun
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
3
|
Hernando-Pérez M, Zeng C, Miguel MC, Dragnea B. Intermittency of Deformation and the Elastic Limit of an Icosahedral Virus under Compression. ACS NANO 2019; 13:7842-7849. [PMID: 31241887 DOI: 10.1021/acsnano.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Viruses undergo mesoscopic morphological changes as they interact with host interfaces and in response to chemical cues. The dynamics of these changes, over the entire temporal range relevant to virus processes, are unclear. Here, we report on creep compliance experiments on a small icosahedral virus under uniaxial constant stress. We find that even at small stresses, well below the yielding point and generally thought to induce a Hookean response, strain continues to develop in time via sparse, randomly distributed, relatively rapid plastic events. The intermittent character of mechanical compliance only appears above a loading threshold, similar to situations encountered in granular flows and the plastic deformation of crystalline solids. The threshold load is much smaller for the empty capsids of the brome mosaic virus than for the wild-type virions. The difference highlights the involvement of RNA in stabilizing the assembly interface. Numerical simulations of spherical crystal deformation suggest intermittency is mediated by lattice defect dynamics and identify the type of compression-induced defect that nucleates the transition to plasticity.
Collapse
Affiliation(s)
| | - Cheng Zeng
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
- Harvard , John A. Paulson School of Applied Sciences , 29 Oxford Street Cambridge , Massachusetts 02138 , United States
| | - M Carmen Miguel
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
4
|
Sharma S, LeClaire M, Gimzewski JK. Ascent of atomic force microscopy as a nanoanalytical tool for exosomes and other extracellular vesicles. NANOTECHNOLOGY 2018; 29:132001. [PMID: 29376505 DOI: 10.1088/1361-6528/aaab06] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over the last 30 years, atomic force microscopy (AFM) has made several significant contributions to the field of biology and medicine. In this review, we draw our attention to the recent applications and promise of AFM as a high-resolution imaging and force sensing technology for probing subcellular vesicles: exosomes and other extracellular vesicles. Exosomes are naturally occurring nanoparticles found in several body fluids such as blood, saliva, cerebrospinal fluid, amniotic fluid and urine. Exosomes mediate cell-cell communication, transport proteins and genetic content between distant cells, and are now known to play important roles in progression of diseases such as cancers, neurodegenerative disorders and infectious diseases. Because exosomes are smaller than 100 nm (about 30-120 nm), the structural and molecular characterization of these vesicles at the individual level has been challenging. AFM has revealed a new degree of complexity in these nanosized vesicles and generated growing interest as a nanoscale tool for characterizing the abundance, morphology, biomechanics, and biomolecular make-up of exosomes. With the recent interest in exosomes for diagnostic and therapeutic applications, AFM-based characterization promises to contribute towards improved understanding of these particles at the single vesicle and sub-vesicular levels. When coupled with complementary methods like optical super resolution STED and Raman, AFM could further unlock the potential of exosomes as disease biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- S Sharma
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States of America
| | | | | |
Collapse
|
5
|
In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials. MINERALS 2017. [DOI: 10.3390/min7090158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
AFM nanoindentation of protein shells, expanding the approach beyond viruses. Semin Cell Dev Biol 2017; 73:145-152. [PMID: 28774579 DOI: 10.1016/j.semcdb.2017.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
The archetypical protein nanoshell is the capsid that surrounds viral genomes. These capsids protect the viral RNA or DNA and function as transport vehicle for their nucleic acid. The material properties of a variety of viral capsids have been probed by Atomic Force Microscopy. In particular nanoindentation measurements revealed the complex mechanics of these shells and the intricate interplay of the capsid with its genomic content. Furthermore, effects of capsid protein mutations, capsid maturation and the effect of environmental changes have been probed. In addition, biological questions have been addressed by AFM nanoindentation of viruses and a direct link between mechanics and infectivity has been revealed. Recently, non-viral protein nanoshells have come under intense scrutiny and now the nanoindentation approach has been expanded to such particles as well. Both natural as well as engineered non-viral protein shells have been probed by this technique. Next to the material properties of viruses, therefor also the mechanics of encapsulins, carboxysomes, vault particles, lumazine synthase and artificial protein nanoshells is discussed here.
Collapse
|
7
|
Zeng C, Moller-Tank S, Asokan A, Dragnea B. Probing the Link among Genomic Cargo, Contact Mechanics, and Nanoindentation in Recombinant Adeno-Associated Virus 2. J Phys Chem B 2017; 121:1843-1853. [PMID: 28142241 DOI: 10.1021/acs.jpcb.6b10131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant adeno-associated virus (AAV) is a promising gene therapy vector. To make progress in this direction, the relationship between the characteristics of the genomic cargo and the capsid stability must be understood in detail. The goal of this study is to determine the role of the packaged vector genome in the response of AAV particles to mechanical compression and adhesion to a substrate. Specifically, we used atomic force microscopy to compare the mechanical properties of empty AAV serotype 2 (AAV2) capsids and AAV2 vectors packaging single-stranded DNA or self-complementary DNA. We found that all species underwent partial deformation upon adsorption from buffer on an atomically flat graphite surface. Upon adsorption, a preferred orientation toward the twofold symmetry axis on the capsid, relative to the substrate, was observed. The magnitude of the bias depended on the cargo type, indicating that the interfacial properties may be influenced by cargo. All particles showed a significant relative strain before rupture. Different from interfacial interactions, which were clearly cargo-dependent, the elastic response to directional stress was largely dominated by the capsid properties. Nevertheless, small differences between particles laden with different cargo were measurable; scAAV vectors were the most resilient to external compression. We also show how elastic constant and rupture force data sets can be analyzed according a multivariate conditional probability approach to determine the genome content on the basis of a database of mechanical properties acquired from nanoindentation assays. Implications for understanding how recombinant AAV capsid-genome interactions can affect vector stability and effectiveness of gene therapy applications are discussed.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | | - Bogdan Dragnea
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Zahedian M, Huang X, Tsvetkova IB, Rotello VM, Schaich WL, Dragnea B. Toward Virus-Like Surface Plasmon Strain Sensors. J Phys Chem B 2016; 120:5896-906. [PMID: 27123824 DOI: 10.1021/acs.jpcb.6b01023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The strong configuration dependence of collective surface plasmon resonances in an array of metal nanoparticles provides an opportunity to develop a bioinspired tool for sensing mechanical deformations in soft matter at the nanoscale. We study the feasibility of a strain sensor based on an icosahedral array of nanoparticles encapsulated by a virus capsid. When the system undergoes deformation, the optical scattering cross-section spectra as well as the induced electric field profile change. By numerical simulations, we examine how these changes depend on the symmetry and extent of the deformation and on both the propagation direction and polarization of the incident radiation. Such a sensor could prove useful in studies of the mechanisms of nanoparticle or virus translocation in the confines of a host cell.
Collapse
Affiliation(s)
- Maryam Zahedian
- Department of Chemistry, Indiana University , Bloomington, United States
| | - Xinlei Huang
- Department of Chemistry, Indiana University , Bloomington, United States
| | - Irina B Tsvetkova
- Department of Chemistry, Indiana University , Bloomington, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , Amherst, United States
| | - William L Schaich
- Department of Physics, Indiana University , Bloomington, United States
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University , Bloomington, United States
| |
Collapse
|