1
|
Lengvinaitė D, Kvedaraviciute S, Bielskutė S, Klimavicius V, Balevicius V, Mocci F, Laaksonen A, Aidas K. Structural Features of the [C4mim][Cl] Ionic Liquid and Its Mixtures with Water: Insight from a 1H NMR Experimental and QM/MD Study. J Phys Chem B 2021; 125:13255-13266. [PMID: 34806880 PMCID: PMC8667039 DOI: 10.1021/acs.jpcb.1c08215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Indexed: 01/05/2023]
Abstract
The 1H NMR chemical shift of water exhibits non-monotonic dependence on the composition of an aqueous mixture of 1-butyl-3-methylimidazolium chloride, [C4mim][Cl], ionic liquid (IL). A clear minimum is observed for the 1H NMR chemical shift at a molar fraction of the IL of 0.34. To scrutinize the molecular mechanism behind this phenomenon, extensive classical molecular dynamics simulations of [C4mim][Cl] IL and its mixtures with water were carried out. A combined quantum mechanics/molecular mechanics approach based on the density functional theory was applied to predict the NMR chemical shifts. The proliferation of strongly hydrogen-bonded complexes between chloride anions and water molecules is found to be the reason behind the increasing 1H NMR chemical shift of water when its molar fraction in the mixture is low and decreasing. The model shows that the chemical shift of water molecules that are trapped in the IL matrix without direct hydrogen bonding to the anions is considerably smaller than the 1H NMR chemical shift predicted for the neat water. The structural features of neat IL and its mixtures with water have also been analyzed in relation to their NMR properties. The 1H NMR spectrum of neat [C4mim][Cl] was predicted and found to be in very reasonable agreement with the experimental data. Finally, the experimentally observed strong dependence of the chemical shift of the proton at position 2 in the imidazolium ring on the composition of the mixture was rationalized.
Collapse
Affiliation(s)
- Dovilė Lengvinaitė
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | | | - Stasė Bielskutė
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Vytautas Klimavicius
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Vytautas Balevicius
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Francesca Mocci
- Università
di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella
Universitaria di Monserrato, Cagliari I-09042, Monserrato, Italy
| | - Aatto Laaksonen
- Energy Engineering,
Division of Energy Science, Luleå
University of Technology, Luleå 97181, Sweden
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, Stockholm 10691, Sweden
- Center of
Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry, Iasi 700469, Romania
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kęstutis Aidas
- Institute
of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Busato M, Del Giudice A, Di Lisio V, Tomai P, Migliorati V, Gentili A, Martinelli A, D’Angelo P. Fate of a Deep Eutectic Solvent upon Cosolvent Addition: Choline Chloride-Sesamol 1:3 Mixtures with Methanol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12252-12261. [PMID: 34552826 PMCID: PMC8442355 DOI: 10.1021/acssuschemeng.1c03809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The changes upon methanol (MeOH) addition in the structural arrangement of the highly eco-friendly deep eutectic solvent (DES) formed by choline chloride (ChCl) and sesamol in 1:3 molar ratio have been studied by means of attenuated total reflection Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering (SWAXS), and molecular dynamics simulations. The introduction of MeOH into the DES promotes the increase of the number of Cl-MeOH hydrogen bonds (HBs) through the replacement of sesamol and choline molecules from the chloride anion coordination sphere. This effect does not promote the sesamol-sesamol, choline-choline, and sesamol-choline interactions, which remain as negligible as in the pure DES. Differently, the displaced sesamol and choline molecules are solvated by MeOH, which also forms HBs with other MeOH molecules, so that the system arranges itself to keep the overall amount of HBs maximized. SWAXS measurements show that this mechanism is predominant up to MeOH/DES molar ratios of 20-24, while after this ratio value, the scattering profile is progressively diluted in the cosolvent background and decreases toward the signal of pure MeOH. The ability of MeOH to interplay with all of the DES components produces mixtures with neither segregation of the components at nanoscale lengths nor macroscopic phase separation even for high MeOH contents. These findings have important implications for application purposes since the understanding of the pseudophase aggregates formed by a DES with a dispersing cosolvent can help in addressing an efficient extraction procedure.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Di Lisio
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Pierpaolo Tomai
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valentina Migliorati
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Paola D’Angelo
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Migliorati V, D’Angelo P. Deep eutectic solvents: A structural point of view on the role of the anion. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Busato M, Lapi A, D’Angelo P, Melchior A. Coordination of the Co 2+ and Ni 2+ Ions in Tf 2N - Based Ionic Liquids: A Combined X-ray Absorption and Molecular Dynamics Study. J Phys Chem B 2021; 125:6639-6648. [PMID: 34109780 PMCID: PMC8279557 DOI: 10.1021/acs.jpcb.1c03395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/30/2021] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) have been combined to study the coordination of the Co2+ and Ni2+ ions in ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide ([Tf2N]-) anion and having different organic cations, namely, 1-butyl-3-methylimidazolium ([C4mim]+), 1,8-bis(3-methylimidazolium-1-yl)octane ([C8(mim)2]2+), N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium ([choline]+), and butyltrimethylammonium ([BTMA]+). Co and Ni K-edge XAS data have been collected on 0.1 mol L-1 Co(Tf2N)2 and Ni(Tf2N)2 solutions and on the metallic salts. MD simulations have been carried out to obtain structural information on the metal ion coordination. The analysis of the extended X-ray absorption fine structure (EXAFS) spectra of the solutions has been carried out based on the atomistic description provided by MD, and the studied ILs have been found to be able to dissolve both the Co(Tf2N)2 and Ni(Tf2N)2 salts giving rise to a different structural arrangement around the metal ions as compared to the solid state. The combined EXAFS and MD results showed that the Co2+ and Ni2+ ions are surrounded by a first solvation shell formed by six [Tf2N]- anions, each coordinating in a monodentate fashion by means of the oxygen atoms. The nature of the IL organic cation has little or no influence on the overall spatial arrangement of the [Tf2N]- anions, so that stable octahedral complexes of the type [M(Tf2N)6]4- (M = Co, Ni) have been observed in all the investigated ILs.
Collapse
Affiliation(s)
- Matteo Busato
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
- DPIA,
Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Andrea Lapi
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Andrea Melchior
- DPIA,
Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
5
|
|
6
|
Busato M, Migliorati V, Del Giudice A, Di Lisio V, Tomai P, Gentili A, D'Angelo P. Anatomy of a deep eutectic solvent: structural properties of choline chloride : sesamol 1 : 3 compared to reline. Phys Chem Chem Phys 2021; 23:11746-11754. [PMID: 33982713 DOI: 10.1039/d1cp01105g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural properties of the deep eutectic solvent (DES) formed by choline chloride (ChCl) and sesamol in 1 : 3 ratio have been investigated and compared to those of reline (ChCl : urea 1 : 2). An integrated approach combining small and wide angle X-ray scattering with molecular dynamics simulations has been employed and the simulation protocol has been validated against the experimental data. In the ChCl : sesamol DES, strong hydrogen bonds (HBs) are formed between the chloride anion and the hydroxyl groups of the choline and of sesamol molecules. Conversely, choline-choline, choline-sesamol and sesamol-sesamol interactions are negligible. A more extended interplay between the constituents is observed in reline where, besides the HBs involving the chloride anion, the eutectic formation is favored also by strong choline-urea and urea-urea interactions. The three-dimensional arrangement around the individual components shows that, in the ChCl : sesamol DES, the cholinium cations and the sesamol molecules are packed in such a way to maximize the interactions with the chlorine anion. This structural arrangement may favor the π-π interactions between the sesamol molecules and the aromatic species mediated by the chloride ions, providing an interpretation for the high separation rates previously observed for phenolic DESs towards aromatic compounds.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Valentina Migliorati
- Department of Chemistry, University "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | | | - Valerio Di Lisio
- Department of Chemistry, University "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Pierpaolo Tomai
- Department of Chemistry, University "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Alessandra Gentili
- Department of Chemistry, University "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Paola D'Angelo
- Department of Chemistry, University "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Migliorati V, Fazio G, Pollastri S, Gentili A, Tomai P, Tavani F, D'Angelo P. Solubilization properties and structural characterization of dissociated HgO and HgCl2 in deep eutectic solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Esser L, Macchieraldo R, Elfgen R, Sieland M, Smarsly BM, Kirchner B. TiCl 4 Dissolved in Ionic Liquid Mixtures from ab Initio Molecular Dynamics Simulations. Molecules 2020; 26:molecules26010079. [PMID: 33375378 PMCID: PMC7795733 DOI: 10.3390/molecules26010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
To gain a deeper understanding of the TiCl4 solvation effects in multi-component ionic liquids, we performed ab initio molecular dynamics simulations of 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]−, chloride [Cl]− both with and without water and titanium tetrachloride TiCl4. Complex interactions between cations and anions are observed in all investigated systems. By further addition of water and TiCl4 this complex interaction network is extended. Observations of the radial distribution functions and number integrals show that water and TiCl4 not only compete with each other to interact mainly with [Cl]−, which strongly influences the cation-[BF4]− interaction, but also interact with each other, which leads to the fact that in certain systems the cation-anion interaction is enhanced. Further investigations of the Voronoi polyhedra analysis have demonstrated that water has a greater impact on the nanosegregated system than TiCl4 which is also due to the fact of the shear amount of water relative to all other components and its higher mobility compared to TiCl4. Overall, the polar network of the IL mixture collapses by including water and TiCl4. In the case of [Cl]− chloride enters the water continuum, while [BF4]− remains largely unaffected, which deeply affects the interaction of the ionic liquid (IL) network.
Collapse
Affiliation(s)
- Lars Esser
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
| | - Roberto Macchieraldo
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
| | - Roman Elfgen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
| | - Melanie Sieland
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany; (M.S.); (B.M.S.)
| | - Bernd Michael Smarsly
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany; (M.S.); (B.M.S.)
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, D-53115 Bonn, Germany; (L.E.); (R.M.); (R.E.)
- Correspondence:
| |
Collapse
|
9
|
Kowsari MH, Torabi SM. Molecular Dynamics Insights into the Nanoscale Structural Organization and Local Interaction of Aqueous Solutions of Ionic Liquid 1-Butyl-3-methylimidazolium Nitrate. J Phys Chem B 2020; 124:6972-6985. [PMID: 32687363 DOI: 10.1021/acs.jpcb.0c01803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considering the growing number of applications of the aqueous ionic liquids (ILs), atomistic molecular dynamics (MD) simulations were used to probe the effect of water molar fraction, xw, ranging from 0.00 to 0.90, on the nanoscale local structure of 1-butyl-3-methylimidazolium nitrate, [bmim][NO3], IL. The results prove that, with water addition, the cation-anion, cation-cation, and anion-anion structural correlations are weakened, while strong anion-water and unconventional cation-water hydrogen bonds are formed in the solutions. Water molecules were detected as bridges between nitrate anions, and the water cluster size distribution at different xw's was investigated. Simulation shows a similar pattern of probability densities for water and anion around the acidic hydrogen atoms of the reference cation ring, while both species move away from the cation butyl chain. Increasing the water concentration to xw = 0.90 causes decreasing of the local arrangement of the nearest-neighboring cations, because of the weakening of cation-cation π-π stacking. In addition, this dilution reduces the probability of the in-plane cation-anion conformation, disrupts both the polar ionic network and nonpolar domains, and diminishes the nanoaggregation of the cation butyl chains compared to those of the neat IL. These results can rationalize the origins of the fluidity enhancements and transport property trends upon adding water to the imidazolium-based ILs. The current study proposes a deep atomistic-level insight into the complex coupling between water concentration, microscopic structure, and local interactions of aqueous imidazolium-based ILs with hydrophilic anions.
Collapse
Affiliation(s)
- Mohammad H Kowsari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S Mohammad Torabi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
10
|
Migliorati V, Lapi A, D'Angelo P. Unraveling the solvation geometries of the lanthanum(iii) bistriflimide salt in ionic liquid/acetonitrile mixtures. Phys Chem Chem Phys 2020; 22:20434-20443. [PMID: 32915187 DOI: 10.1039/d0cp03977b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
La(Tf2N)3 in C8(mim)2(Tf2N)2/acetonitrile mixtures forms 10-fold coordination complexes composed of both acetonitrile molecules and Tf2N− anions.
Collapse
Affiliation(s)
| | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
11
|
Migliorati V, Caruso A, D’Angelo P. Unraveling the Hydration Properties of the Ba2+ Aqua Ion: the Interplay of Quantum Mechanics, Molecular Dynamics, and EXAFS Spectroscopy. Inorg Chem 2019; 58:14551-14559. [DOI: 10.1021/acs.inorgchem.9b02204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Valentina Migliorati
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessandro Caruso
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Paola D’Angelo
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
12
|
The possibility of cadmium extraction to the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate in the presence of hydrochloric acid: a molecular dynamics study of the water–IL interface. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2489-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Tan J, Xiong X, Yan P. Synthesis and Aggregation Behavior of Trisiloxane Ionic Liquids in Aqueous Solution. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinglin Tan
- School of Chemical and Environmental EngineeringJiujiang University Jiujiang, 332005 China
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry Jiujiang, 332005 China
| | - Xiaomei Xiong
- School of Chemical and Environmental EngineeringJiujiang University Jiujiang, 332005 China
| | - Ping Yan
- School of Chemical and Environmental EngineeringJiujiang University Jiujiang, 332005 China
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry Jiujiang, 332005 China
| |
Collapse
|
14
|
Migliorati V, Filipponi A, Sessa F, Lapi A, Serva A, D'Angelo P. Solvation structure of lanthanide(iii) bistriflimide salts in acetonitrile solution: a molecular dynamics simulation and EXAFS investigation. Phys Chem Chem Phys 2019; 21:13058-13069. [DOI: 10.1039/c9cp01417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lanthanide3+ ions in acetonitrile solutions of bistriflimide salts form 10-fold coordination complexes composed of both solvent molecules and counterions
Collapse
Affiliation(s)
| | - Adriano Filipponi
- Dipartimento di Scienze Fisiche e Chimiche
- Università degli Studi dell’Aquila, Via Vetoio
- 67100 L’Aquila
- Italy
| | - Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
- Istituto CNR di Metodologie Chimiche-IMC
| | - Alessandra Serva
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
15
|
|
16
|
Ma C, Laaksonen A, Liu C, Lu X, Ji X. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 2018; 47:8685-8720. [PMID: 30298877 DOI: 10.1039/c8cs00325d] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have been suggested as eco-friendly alternatives to organic solvents. A trace amount of water is often unavoidable as impurity, and water is also added on purpose to reduce their problematically high viscosity and lower their high price. Understanding the distinct effects of water on the properties of ILs/DESs is highly important. In this review, we collect published experimental and theoretical results for IL/DES-H2O systems at varied water concentrations and analyze them. Results from mechanistic studies, thermodynamic modelling and advanced experiments are collected and critically discussed. Six commonly studied IL/DES-H2O systems were selected to map experimental observations onto microscopic results obtained in mechanistic studies. A great variety of distinct contours of the excess properties can be observed over the entire compositional range, indicating that the properties of IL/DES-H2O systems are highly unpredictable. Mechanistic studies clearly demonstrate that the added H2O rapidly changes the heterogeneous 3D structures of pure ILs/DESs, leading to very different properties and behaviour. There are similarities between aqueous electrolytes and IL/DES solutions but the bulky and asymmetric organic cations in ILs/DESs do not conform to the standard salt dissolution and hydration concepts. Thermodynamic modelling previously assumes ILs/DESs to be either a neutral ion-pair or completely dissociated ions, neglecting specific ion hydration effects. A new conceptual framework is suggested for thermodynamic modelling of IL/DES-H2O binary systems to enable new technologies for their practical applications.
Collapse
Affiliation(s)
- Chunyan Ma
- Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, 971 87, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Macchieraldo R, Esser L, Elfgen R, Voepel P, Zahn S, Smarsly BM, Kirchner B. Hydrophilic Ionic Liquid Mixtures of Weakly and Strongly Coordinating Anions with and without Water. ACS OMEGA 2018; 3:8567-8582. [PMID: 31458986 PMCID: PMC6644474 DOI: 10.1021/acsomega.8b00995] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/20/2018] [Indexed: 05/22/2023]
Abstract
With the aid of ab initio molecular dynamics simulations, we investigate an ionic liquid (IL) mixture composed of three components 1-butyl-3-methylimidazolium [C4C1Im]+, tetrafluoroborate [BF4]-, and chloride [Cl]- without and with water. In the pure IL mixture, we observe an already complex network of interactions between cations and anions, and addition of water to the system even extends the complexity. Observed number integrals show that the coordination number between cations and anions is reduced in the system with water compared to that in the pure system. Further studies show that the Coulombic network of the strongly coordinating anion [Cl]- is disturbed by water, while that of the weakly coordinating anion [BF4]- is not. These observations can also be confirmed by the Voronoi polyhedra analysis, which shows that the polar network of microheterogeneous IL collapses by the introduction of water. Hydrogen-acceptor interactions revealed that the [Cl]- anions are transferred from being situated in the IL to the water continuum, while [BF4]- is almost unperturbed; these effects mainly influence the interplay of the ionic liquid network.
Collapse
Affiliation(s)
- Roberto Macchieraldo
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Lars Esser
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Roman Elfgen
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45413 Mülheim an der Ruhr, Germany
| | - Pascal Voepel
- Institute
of Physical Chemistry and Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff Ring 17+16, D-35392 Giessen, Germany
| | - Stefan Zahn
- Leibniz
Institute of Surface Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Bernd M. Smarsly
- Institute
of Physical Chemistry and Center for Materials Research (LaMa), Justus-Liebig-University Giessen, Heinrich-Buff Ring 17+16, D-35392 Giessen, Germany
| | - Barbara Kirchner
- Mulliken
Center for Theoretical Chemistry, University
of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
- E-mail:
| |
Collapse
|
18
|
Chattaraj KG, Paul S. Understanding of Structure and Thermodynamics of Melamine Association in Aqueous Solution from a Unified Theoretical and Experimental Approach. J Chem Inf Model 2018; 58:1610-1624. [PMID: 30040417 DOI: 10.1021/acs.jcim.8b00231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aggregation propensity of melamine molecules in aqueous solutions in a range of melamine concentrations is investigated by means of a combination of theoretical and experimental approaches. It is observed that the hydrogen bonding interactions of sp3 nitrogen atoms of one melamine with sp2 nitrogen atoms of another melamine play a major role in the melamine association. This finding is complemented by the observed favorable electrostatic energies between melamine molecules. The estimation of the orientational probability of melamine aromatic ring rules out any role of π-π interaction in melamine association. Further, the quantum chemical calculations suggest that a melamine molecule prefers to bind with another like molecule with a dihedral angle ranging from 36° to 46°. We have also determined the dimer existence autocorrelation functions to investigate the melamine-dimer stability with time in aqueous solution. Our results are well validated by the experimental findings (Chapman, R. P.; Averell, P. R.; Harris, R. R. Solubility of Melamine in Water. Ind. Eng. Chem. 1943, 35, 137-138. Ahromi, A. J.; Moosheimer, U. Oxygen Barrier Coatings Based on Supramolecular Assembly of Melamine. Macromolecules 2000, 33, 7582-7587. Yang, C.; Liu. Y. Studying on the Steady-State and Time-Resolved Fluorescence Characteristics of Melamine. Spectrochim. Acta A 2010, 75, 1329-1332. Mircescu, N. E.; Oltean, M.; Chis, V.; Leopold, N. FTIR, FT-Raman, SERS and DFT study on Melamine. Vib. Spectrosc. 2012, 62, 165-171. Makowski. S. J.; Lacher. M.; Schnick. W. Supramolecular Hydrogenbonded Structures between Melamine and N-Heterocycles. J. Mol. Struct. 2012, 1013, 19-25. Li, Z.; Chen, G.; Xu, Y.; Wang, X.; Wang, Z. Study of the Structural and Spectral Characteristics of C3N3(NH2)3(n = 1-4) Clusters. J. Phys. Chem. A 2013, 117, 12511-12518. Li, P.; Arman, D. H.; Wang, H.; Weng, L.; Alfooty, K.; Angawi, R. F.; Chen. B. Solvent Dependent Structures of Melamine: Porous or Non-porous. Cryst. Growth Des. 2015, 15, 1871-1875. Chen, J.; Lei, X.; Peng, B. Study on the Fluorescence Spectra of Melamine in Pure Milk. J. Opt. 2017, 46, 183-186.). Moreover, the thermodynamics of melamine association reveals that the association process is essentially driven by enthalpy, and this enthalpy-driven phenomenon is also confirmed by the experimental isothermal titration calorimetry measurements.
Collapse
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam , India 781039
| |
Collapse
|
19
|
Nandi S, Parui S, Jana B, Bhattacharyya K. Local environment of organic dyes in an ionic liquid-water mixture: FCS and MD simulation. J Chem Phys 2018; 149:054501. [DOI: 10.1063/1.5027458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Somen Nandi
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sridip Parui
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
20
|
Sessa F, Migliorati V, Lapi A, D’Angelo P. Ce3+ and La3+ ions in ethylammonium nitrate: A XANES and molecular dynamics investigation. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Gholizadeh R, Wang Y. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Migliorati V, Serva A, Sessa F, Lapi A, D’Angelo P. Influence of Counterions on the Hydration Structure of Lanthanide Ions in Dilute Aqueous Solutions. J Phys Chem B 2018; 122:2779-2791. [DOI: 10.1021/acs.jpcb.7b12571] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Valentina Migliorati
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Serva
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Sessa
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Lapi
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
- Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola D’Angelo
- Department of Chemistry, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
23
|
Sessa F, Migliorati V, Serva A, Lapi A, Aquilanti G, Mancini G, D'Angelo P. On the coordination of Zn2+ ion in Tf2N− based ionic liquids: structural and dynamic properties depending on the nature of the organic cation. Phys Chem Chem Phys 2018; 20:2662-2675. [DOI: 10.1039/c7cp07497b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Zn2+ coordination structure changes when the Zn(Tf2N)2 salt is dissolved in ionic liquids resulting in more favorable interactions among solvent cations and anions.
Collapse
Affiliation(s)
- Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | - Alessandra Serva
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
- Istituto CNR di Metodologie Chimiche-IMC
| | | | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
24
|
KUNIKATA N, TOMIOKA K, MAKI H, MIZUHATA M. Thermophysical Properties of Binary Amide Anion-Based Ionic Liquids; TMPAFSA<i><sub>x</sub></i>TFSA<sub>1−</sub><i><sub>x</sub></i>. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.17-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nobuaki KUNIKATA
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| | - Kengo TOMIOKA
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| | - Hideshi MAKI
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
- Center for Environmental Management, Kobe University
| | - Minoru MIZUHATA
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| |
Collapse
|
25
|
Kan Z, Zheng D, Ma J. Self-aggregation of trehalose in the mixed solvents of 1,3-dimethylimidazolium ionic liquid and water. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zigui Kan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
- School of Sciences, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Dong Zheng
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Migliorati V, Filipponi A, Di Cicco A, De Panfilis S, D’Angelo P. Structure of Water in Zn2+ Aqueous Solutions from Ambient Conditions up to the Gigapascal Pressure Range: A XANES and Molecular Dynamics Study. Inorg Chem 2017; 56:14013-14022. [DOI: 10.1021/acs.inorgchem.7b02151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valentina Migliorati
- Dipartimento di
Chimica, Università di Roma “La Sapienza”, P.le
A. Moro 5, 00185 Roma, Italy
| | - Adriano Filipponi
- Dipartimento di Scienze
Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Andrea Di Cicco
- Sezione di Fisica,
Scuola di Scienze e Tecnologie, Università di Camerino, 62032 Camerino (MC), Italy
| | - Simone De Panfilis
- Centre
for Life Nano Science - IIT@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, 00161 Rome, Italy
| | - Paola D’Angelo
- Dipartimento di
Chimica, Università di Roma “La Sapienza”, P.le
A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
27
|
Gholizadeh R, Wang Y, Yu Y. Molecular dynamics simulations of stability at the early stages of silica materials preparation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Migliorati V, Serva A, Terenzio FM, D’Angelo P. Development of Lennard-Jones and Buckingham Potentials for Lanthanoid Ions in Water. Inorg Chem 2017; 56:6214-6224. [DOI: 10.1021/acs.inorgchem.7b00207] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valentina Migliorati
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessandra Serva
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Filippo Maria Terenzio
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Paola D’Angelo
- Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
29
|
Serva A, Migliorati V, Spezia R, D'Angelo P. How Does CeIII
Nitrate Dissolve in a Protic Ionic Liquid? A Combined Molecular Dynamics and EXAFS Study. Chemistry 2017; 23:8424-8433. [DOI: 10.1002/chem.201604889] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandra Serva
- Dipartimento di Chimica; Università di Roma “La Sapienza”; P. le A. Moro 5 00185 Roma Italy
| | - Valentina Migliorati
- Dipartimento di Chimica; Università di Roma “La Sapienza”; P. le A. Moro 5 00185 Roma Italy
| | - Riccardo Spezia
- LAMBE CEA, CNRS; Université Paris Saclay; 91025 Evry Cedex France
- LAMBE Université d'Evry; 91025 Evry Cedex France
| | - Paola D'Angelo
- Dipartimento di Chimica; Università di Roma “La Sapienza”; P. le A. Moro 5 00185 Roma Italy
| |
Collapse
|
30
|
Singh AP, Gardas RL, Senapati S. How water manifests the structural regimes in ionic liquids. SOFT MATTER 2017; 13:2348-2361. [PMID: 28275768 DOI: 10.1039/c6sm02539k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionic liquids (ILs) are being considered as greener alternatives to the conventional organic solvents. However, highly viscous nature of ILs often limits their applications. Hence studies on IL/water binary mixtures have received tremendous attention. These mixtures exhibit much lower viscosity, but almost similar density, compressibility and other properties as that of the neat ILs, up to certain water content. Hence, determining the IL-water ratio till which the solution behaves like IL and subsequently changes to a state of solute IL dissolved in continuous water phase is of paramount importance. Noting the very different and characteristic behaviours of neat ILs and pure water over a temperature range, herein, we measured the various thermophysical properties of the binary mixtures of tetramethylguanidinium benzoate/water and tetramethylguanidinium salicylate/water with water content varying from 20 wt% to 95 wt% for a temperature range of 298 K to 343 K. The results show that similar to neat ILs, the measured densities and compressibility of these mixtures display a linear change, and viscosity decreases rapidly as temperature is increased for water content up to 50 wt%. At higher water concentrations, the measured density and compressibility exhibit nonlinear behaviour and the decrease in viscosity with increased temperature is minute, mimicking the behaviour of bulk water. MD simulations were carried out to explain the experimental observations. Simulation results show a greater temperature-induced disintegration of IL ion-water interactions in dense systems, explaining the rapid decay of the properties with temperature. The results also exhibit the presence of a neat, IL-like, H-bond mediated expanded structure in concentrated solution versus a collapsed IL structure in dilute solution.
Collapse
Affiliation(s)
- Akhil Pratap Singh
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India. and Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ramesh L Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
31
|
Hettige JJ, Amith WD, Castner EW, Margulis CJ. Ionic Liquids with Symmetric Diether Tails: Bulk and Vacuum-Liquid Interfacial Structures. J Phys Chem B 2016; 121:174-179. [DOI: 10.1021/acs.jpcb.6b09148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeevapani J. Hettige
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Edward W. Castner
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Claudio J. Margulis
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
32
|
Migliorati V, D’Angelo P. Unraveling the Sc3+ Hydration Geometry: The Strange Case of the Far-Coordinated Water Molecule. Inorg Chem 2016; 55:6703-11. [DOI: 10.1021/acs.inorgchem.6b00962] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valentina Migliorati
- Dipartimento
di Chimica, Università di Roma “La Sapienza”, P.le
A. Moro 5, 00185 Roma, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La Sapienza”, P.le
A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
33
|
Serva A, Migliorati V, Lapi A, Aquilanti G, Arcovito A, D'Angelo P. Structural properties of geminal dicationic ionic liquid/water mixtures: a theoretical and experimental insight. Phys Chem Chem Phys 2016; 18:16544-54. [DOI: 10.1039/c6cp01557c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The structural properties of geminal dicationic ionic liquid/water mixtures have been investigated using EXAFS spectroscopy and molecular dynamics simulations.
Collapse
Affiliation(s)
- Alessandra Serva
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
- Istituto CNR di Metodologie Chimiche-IMC
| | | | - Alessandro Arcovito
- Istituto di Biochimica e Biochimica Clinica
- Università Cattolica del Sacro Cuore
- 00168 Roma
- Italy
| | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|