1
|
Bhattacharjee S, Arra S, Daidone I, Pantazis DA. Excitation landscape of the CP43 photosynthetic antenna complex from multiscale simulations. Chem Sci 2024; 15:7269-7284. [PMID: 38756808 PMCID: PMC11095388 DOI: 10.1039/d3sc06714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Photosystem II (PSII), the principal enzyme of oxygenic photosynthesis, contains two integral light harvesting proteins (CP43 and CP47) that bind chlorophylls and carotenoids. The two intrinsic antennae play crucial roles in excitation energy transfer and photoprotection. CP43 interacts most closely with the reaction center of PSII, specifically with the branch of the reaction center (D1) that is responsible for primary charge separation and electron transfer. Deciphering the function of CP43 requires detailed atomic-level insights into the properties of the embedded pigments. To advance this goal, we employ a range of multiscale computational approaches to determine the site energies and excitonic profile of CP43 chlorophylls, using large all-atom models of a membrane-bound PSII monomer. In addition to time-dependent density functional theory (TD-DFT) used in the context of a quantum-mechanics/molecular-mechanics setup (QM/MM), we present a thorough analysis using the perturbed matrix method (PMM), which enables us to utilize information from long-timescale molecular dynamics simulations of native PSII-complexed CP43. The excited state energetics and excitonic couplings have both similarities and differences compared with previous experimental fits and theoretical calculations. Both static TD-DFT and dynamic PMM results indicate a layered distribution of site energies and reveal specific groups of chlorophylls that have shared contributions to low-energy excitations. Importantly, the contribution to the lowest energy exciton does not arise from the same chlorophylls at each system configuration, but rather changes as a function of conformational dynamics. An unexpected finding is the identification of a low-energy charge-transfer excited state within CP43 that involves a lumenal (C2) and the central (C10) chlorophyll of the complex. The results provide a refined basis for structure-based interpretation of spectroscopic observations and for further deciphering excitation energy transfer in oxygenic photosynthesis.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Srilatha Arra
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
2
|
Begam K, Aksu H, Dunietz BD. Antioxidative Triplet Excitation Energy Transfer in Bacterial Reaction Center Using a Screened Range Separated Hybrid Functional. J Phys Chem B 2024. [PMID: 38687467 DOI: 10.1021/acs.jpcb.3c08501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Excess energy absorbed by photosystems (PSs) can result in photoinduced oxidative damage. Transfer of such energy within the core pigments of the reaction center in the form of triplet excitation is important in regulating and preserving the functionality of PSs. In the bacterial reaction center (BRC), the special pair (P) is understood to act as the electron donor in a photoinduced charge transfer process, triggering the charge separation process through the photoactive branch A pigments that experience a higher polarizing environment. At this work, triplet excitation energy transfer (TEET) in BRC is studied using a computational perspective to gain insights into the roles of the dielectric environment and interpigment orientations. We find in agreement with experimental observations that TEET proceeds through branch B. The TEET process toward branch B pigment is found to be significantly faster than the hypothetical process proceeding through branch A pigments with ps and ms time scales, respectively. Our calculations find that conformational differences play a major role in this branch asymmetry in TEET, where the dielectric environment asymmetry plays only a secondary role in directing the TEET to proceed through branch B. We also address TEET processes asserting the role of carotenoid as the final triplet energy acceptor and in a mutant form, where the branch pigments adjacent to P are replaced by bacteriopheophytins. The necessary electronic excitation energies and electronic state couplings are calculated by the recently developed polarization-consistent framework combining a screened range-separated hybrid functional and a polarizable continuum mode. The polarization-consistent potential energy surfaces are used to parametrize the quantum mechanical approach, implementing Fermi's golden rule expression of the TEET rate calculations.
Collapse
Affiliation(s)
- Khadiza Begam
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Huseyin Aksu
- Department of Physics, Faculty of Science at Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Ansteatt S, Gelfand R, Pelton M, Ptaszek M. Geometry-Independent Ultrafast Energy Transfer in Bioinspired Arrays Containing Electronically Coupled BODIPY Dimers as Energy Donors. Chemistry 2023; 29:e202301571. [PMID: 37494565 DOI: 10.1002/chem.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
In photosynthetic light-harvesting complexes, strong interaction between chromophores enables efficient absorption of solar radiation and has been suggested to enable ultrafast energy funneling to the reaction center. To examine whether similar effects can be realized in synthetic systems, and to determine the mechanisms of energy transfer, we synthesized and characterized a series of bioinspired arrays containing strongly-coupled BODIPY dimers as energy donors and chlorin derivatives as energy acceptors. The BODIPY dimers feature broad absorption in the range of 500-600 nm, complementing the chlorin absorption to provide absorption across the entire visible spectrum. Ultrafast (~10 ps) energy transfer was observed from photoexcited BODIPY dyads to chlorin subunits. Surprisingly, the energy-transfer rate is nearly independent of the position where the BODIPY dimer is attached to the chlorin and of the type of connecting linker. In addition, the energy-transfer rate from BODIPY dimers to chlorin is slower than the corresponding rate in arrays containing BODIPY monomers. The lower rate, corresponding to less efficient through-bond transfer, is most likely due to weaker electronic coupling between the ground state of the chlorin acceptor and the delocalized electronic state of the BODIPY dimer, compared to the localized state of a BODIPY monomer.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Rachel Gelfand
- Department of Physics, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
- Department of Physics, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
4
|
Avramopoulos A, Reis H, Tzeli D, Zaleśny R, Papadopoulos MG. Photoswitchable Molecular Units with Tunable Nonlinear Optical Activity: A Theoretical Investigation. Molecules 2023; 28:5646. [PMID: 37570617 PMCID: PMC10419997 DOI: 10.3390/molecules28155646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The first-, second-, and third-order molecular nonlinear optical properties, including two-photon absorption of a series of derivatives, involving two dithienylethene (DTE) groups connected by several molecular linkers (bis(ethylene-1,2-dithiolato)Ni- (NiBDT), naphthalene, quasilinear oligothiophene chains), are investigated by employing density functional theory (DFT). These properties can be efficiently controlled by DTE switches, in connection with light of appropriate frequency. NiBDT, as a linker, is associated with a greater contrast, in comparison to naphthalene, between the first and second hyperpolarizabilities of the "open-open" and the "closed-closed" isomers. This is explained by invoking the low-lying excited states of NiBDT. It is shown that the second hyperpolarizability can be used as an index, which follows the structural changes induced by photochromism. Assuming a Förster type transfer mechanism, the intramolecular excited-state energy transfer (EET) mechanism is studied. Two important parameters related to this are computed: the electronic coupling (VDA) between the donor and acceptor fragments as well as the overlap between the absorption and emission spectra of the donor and acceptor groups. NiBDT as a linker is associated with a low electronic coupling, VDA, value. We found that VDA is affected by molecular geometry. Our results predict that the linker strongly influences the communication between the open-closed DTE groups. The sensitivity of the molecular nonlinear optical properties could assist with identification of molecular isomers.
Collapse
Affiliation(s)
| | - Heribert Reis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (H.R.); (M.G.P.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland;
| | - Manthos G. Papadopoulos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (H.R.); (M.G.P.)
| |
Collapse
|
5
|
Sen S, Visscher L. Towards the description of charge transfer states in solubilised LHCII using subsystem DFT. PHOTOSYNTHESIS RESEARCH 2023; 156:39-57. [PMID: 35988131 PMCID: PMC10070235 DOI: 10.1007/s11120-022-00950-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 05/05/2023]
Abstract
Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depending on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611-Chl612 cluster of the terminal emitter domain can play an important role in modifying the spectral properties of the complex. In that work the importance of charge transfer (CT) effects was highlighted, in re-shaping the absorption intensity of the chlorophyll dimer. Here in this work, we investigate the combined effect of the local excited (LE) and CT states in shaping the energy landscape of the chlorophyll dimer. Using subsystem Density Functional Theory over the classical [Formula: see text]s MD trajectory we look explicitly into the excitation energies of the LE and the CT states of the dimer and their corresponding couplings. Upon doing so, we observe a drop in the excitation energies of the CT states, accompanied by an increase in the couplings between the LE/LE and the LE/CT states facilitated by a shorter interchromophoric distance upon equilibration. Both these changes in conjunction, effectively produces a red-shift of the low-lying mixed exciton/CT states of the supramolecular chromophore pair.
Collapse
Affiliation(s)
- Souloke Sen
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Maity S, Kleinekathöfer U. Recent progress in atomistic modeling of light-harvesting complexes: a mini review. PHOTOSYNTHESIS RESEARCH 2023; 156:147-162. [PMID: 36207489 PMCID: PMC10070314 DOI: 10.1007/s11120-022-00969-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this mini review, we focus on recent advances in the atomistic modeling of biological light-harvesting (LH) complexes. Because of their size and sophisticated electronic structures, multiscale methods are required to investigate the dynamical and spectroscopic properties of such complexes. The excitation energies, in this context also known as site energies, excitonic couplings, and spectral densities are key quantities which usually need to be extracted to be able to determine the exciton dynamics and spectroscopic properties. The recently developed multiscale approach based on the numerically efficient density functional tight-binding framework followed by excited state calculations has been shown to be superior to the scheme based on pure classical molecular dynamics simulations. The enhanced approach, which improves the description of the internal vibrational dynamics of the pigment molecules, yields spectral densities in good agreement with the experimental counterparts for various bacterial and plant LH systems. Here, we provide a brief overview of those results and described the theoretical foundation of the multiscale protocol.
Collapse
Affiliation(s)
- Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
7
|
Kim TI, Lee IS, Kim H, Min SK. Calculation of exciton couplings based on density functional tight-binding coupled to state-interaction state-averaged ensemble-referenced Kohn-Sham approach. J Chem Phys 2023; 158:044106. [PMID: 36725518 DOI: 10.1063/5.0132361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We introduce the combination of the density functional tight binding (DFTB) approach, including onsite correction (OC) and long-range corrected (LC) functional and the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method with extended active space involving four electrons and four orbitals [LC-OC-DFTB/SSR(4,4)], to investigate exciton couplings in multichromophoric systems, such as organic crystals and molecular aggregates. We employ the LC-OC-DFTB/SSR(4,4) method to calculate the excitonic coupling in anthracene and tetracene. As a result, the LC-OC-DFTB/SSR(4,4) method provides a reliable description of the locally excited (LE) state in a single chromophore and the excitonic couplings between chromophores with reasonable accuracy compared to the experiment and the conventional SSR(4,4) method. In addition, the thermal fluctuation of excitonic couplings from dynamic nuclear motion in an anthracene crystal with LC-OC-DFTB/SSR(4,4) shows a similar fluctuation of excitonic coupling and spectral density with those of first-principle calculations. We conclude that LC-OC-DFTB/SSR(4,4) is capable of providing reasonable features related to LE states, such as Frenkel exciton with efficient computational cost.
Collapse
Affiliation(s)
- Tae In Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hwon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
8
|
Mikalčiūtė A, Gelzinis A, Mačernis M, Büchel C, Robert B, Valkunas L, Chmeliov J. Structure-based model of fucoxanthin-chlorophyll protein complex: Calculations of chlorophyll electronic couplings. J Chem Phys 2022; 156:234101. [PMID: 35732526 DOI: 10.1063/5.0092154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue-green light, their major light-harvesting antennae-fucoxanthin-chlorophyll protein complexes (FCPs)-exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data. In this work, we use the recently resolved crystallographic information of the FCP complex from Phaeodactylum tricornutum diatom [Wang et al., Science 363, 6427 (2019)] and quantum chemistry-based calculations to evaluate the chlorophyll transition dipole moments, atomic transition charges from electrostatic potential, and the inter-chlorophyll couplings in this complex. The obtained structure-based excitonic couplings form the foundation for any modeling of stationary or time-resolved spectroscopic data. We also calculate the inter-pigment Förster energy transfer rates and identify two quickly equilibrating chlorophyll clusters.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| |
Collapse
|
9
|
Giannini S, Peng WT, Cupellini L, Padula D, Carof A, Blumberger J. Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization. Nat Commun 2022; 13:2755. [PMID: 35589694 PMCID: PMC9120088 DOI: 10.1038/s41467-022-30308-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.
Collapse
Affiliation(s)
- Samuele Giannini
- Department of Physics and Astronomy and Thomas Young Centre, University College London, WC1E 6BT, London, UK.
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000, Mons, Belgium.
| | - Wei-Tao Peng
- Department of Physics and Astronomy and Thomas Young Centre, University College London, WC1E 6BT, London, UK
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Antoine Carof
- Laboratoire de Physique et Chimie Théoriques, CNRS, UMR No. 7019, Université de Lorraine, BP 239, 54506, Vandoeuvre-lés-Nancy Cedex, France
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
10
|
Mao R, Wang X, Gao J. Bridging Carotenoid-to-Bacteriochlorophyll Energy Transfer of Purple Bacteria LH2 With Temperature Variations: Insights From Conformational Changes. Front Chem 2021; 9:764107. [PMID: 34671594 PMCID: PMC8521103 DOI: 10.3389/fchem.2021.764107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Photosynthesis is a key process for converting light energy into chemical energy and providing food for lives on Earth. Understanding the mechanism for the energy transfers could provide insights into regulating energy transfers in photosynthesis and designing artificial photosynthesis systems. Many efforts have been devoted to exploring the mechanism of temperature variations affecting the excitonic properties of LH2. In this study, we performed all-atom molecular dynamics (MD) simulations and quantum mechanics calculations for LH2 complex from purple bacteria along with its membrane environment under three typical temperatures: 270, 300, and 330 K. The structural analysis from validated MD simulations showed that the higher temperature impaired interactions at N-terminus of both α and β polypeptide helices and led to the dissociation of this hetero polypeptide dimer. Rhodopin-β-D-glucosides (RG1) moved centripetally with α polypeptide helices when temperature increased and enlarged their distances with bacteriochlorophylls molecules that have the absorption peak at 850 nm (B850), which resulted in reducing the coupling strengths between RG1 and B850 molecules. The present study reported a cascading mechanism for temperature regulating the energy transfers in LH2 of purple bacteria.
Collapse
Affiliation(s)
- Ruichao Mao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Zhao Y, Sørensen ER, Lindkvist TT, Kjaer C, Brøndsted Nielsen M, Chen L, Brøndsted Nielsen S. Triangular Rhodamine Triads and Their Intrinsic Photophysics Revealed from Gas-Phase Ion Fluorescence Experiments. Chemistry 2021; 27:10875-10882. [PMID: 34060662 DOI: 10.1002/chem.202101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/10/2022]
Abstract
When ionic dyes are close together, the internal Coulomb interaction may affect their photophysics and the energy-transfer efficiency. To explore this, we have prepared triangular architectures of three rhodamines connected to a central triethynylbenzene unit (1,3,5-tris(buta-1,3-diyn-1-yl)benzene) based on acetylenic coupling reactions and measured fluorescence spectra of the isolated, triply charged ions in vacuo. We find from comparisons with previously reported monomer and dimer spectra that while polarization of the π-system causes redshifted emission, the separation between the rhodamines is too large for a Stark shift. This picture is supported by electrostatic calculations on model systems composed of three linear and polarizable ionic dyes in D3h configuration: The electric field that each dye experiences from the other two is too small to induce a dipole moment, both in the ground and the excited state. In the case of heterotrimers that contain either two rhodamine 575 (R575) and one R640 or one R575 and two R640, emission is almost purely from R640 although the polarization of the π-system expectedly diminishes the dipole-dipole interaction.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | | | | | - Christina Kjaer
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | | |
Collapse
|
12
|
Schieschke N, Bold BM, Dohmen PM, Wehl D, Hoffmann M, Dreuw A, Elstner M, Höfener S. Geometry dependence of excitonic couplings and the consequences for configuration-space sampling. J Comput Chem 2021; 42:1402-1418. [PMID: 33993548 DOI: 10.1002/jcc.26552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/02/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022]
Abstract
Excitonic coupling plays a key role for the understanding of excitonic energy transport (EET) in, for example, organic photovoltaics. However, the calculation of realistic systems is often beyond the applicability range of accurate wavefunction methods so that lower-scaling semi-empirical methods are used to model EET events. In the present work, the distance and angle dependence of excitonic couplings of dimers of selected organic molecules are evaluated for the semi-empirical long-range corrected density functional based tight binding (LC-DFTB) method and spin opposite scaled second order approximate coupled cluster singles and doubles (SOS-CC2). While semi-empirically scaled methods can lead to slightly increased deviations for excitation energies, the excitonic couplings and their dependence on the dimer geometry are reproduced. LC-DFTB yields a similar accuracy range as density-functional theory (DFT) employing the ωB97X functional while the computation time is reduced by several orders of magnitude. The dependence of the exchange contributions to the excitonic couplings on the dimer geometry is analyzed assessing the calculation of Coulombic excitonic couplings from monomer local excited states only, which reduces the computational effort significantly. The present work is a necessary first step toward the simulation of excitonic energy transport using semi-empirical methods.
Collapse
Affiliation(s)
- Nils Schieschke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Beatrix M Bold
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Philipp M Dohmen
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Daniel Wehl
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Heidelberg, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Biological Interfaces (IGB2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - Sebastian Höfener
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
13
|
Li X, Buda F, de Groot HJM, Sevink GJA. Dynamic Disorder Drives Exciton Transfer in Tubular Chlorosomal Assemblies. J Phys Chem B 2020; 124:4026-4035. [PMID: 32343578 PMCID: PMC7246976 DOI: 10.1021/acs.jpcb.0c00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlorosomes stand out for their highly efficient excitation energy transfer (EET) in extreme low light conditions. Yet, little is known about the EET when a chlorosome is excited to a pure state that is an eigenstate of the exciton Hamiltonian. In this work, we consider the dynamic disorder in the intermolecular electronic coupling explicitly by calculating the electronic coupling terms in the Hamiltonian using nuclear coordinates that are taken from molecular dynamics simulation trajectories. We show that this dynamic disorder is capable of driving the evolution of the exciton, being a stationary state of the initial Hamiltonian. In particular, long-distance excitation energy transfer between domains of high exciton population and oscillatory behavior of the population in the site basis are observed, in line with two-dimensional electronic spectroscopy studies. We also found that in the high exciton population domains, their population variation is correlated with their overall coupling strength. Analysis in a reference state basis shows that such dynamic disorder, originating from thermal energy, creates a fluctuating landscape for the exciton and promotes the EET process. We propose such dynamic disorder as an important microscopic origin for the high efficient EET widely observed in different types of chlorosomes, bioinspired tubular aggregates, or other light-harvesting complexes.
Collapse
Affiliation(s)
- Xinmeng Li
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Buda
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Huub J M de Groot
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - G J Agur Sevink
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Janke SM, Qarai MB, Blum V, Spano FC. Frenkel-Holstein Hamiltonian applied to absorption spectra of quaterthiophene-based 2D hybrid organic-inorganic perovskites. J Chem Phys 2020; 152:144702. [PMID: 32295353 DOI: 10.1063/1.5139044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the prototypical two-dimensional hybrid organic-inorganic perovskites (2D HOIPs) (AE4T)PbX4 (X = Cl, Br, and I), we demonstrate that the Frenkel-Holstein Hamiltonian (FHH) can be applied to describe the absorption spectrum arising from the organic component. We first model the spectra using only the four nearest neighbor couplings between translationally inequivalent molecules in the organic herringbone lattice as fitting parameters in the FHH. We next use linear-response time-dependent density functional theory (LR-TDDFT) to calculate molecular transition densities, from which extended excitonic couplings are evaluated based on the atomic positions within the 2D HOIPs. We find that both approaches reproduce the experimentally observed spectra, including changes in their shape and peak positions. The spectral changes are correlated with a decrease in excitonic coupling from X = Cl to X = I. Importantly, the LR-TDDFT-based approach with extended excitonic couplings not only gives better agreement with the experimental absorption line shape than the approach using a restricted set of fitted parameters but also allows us to relate the changes in excitonic coupling to the underlying geometry. We accordingly find that the decrease in excitonic coupling from X = Cl to Br to I is due to an increase in molecular separation, which in turn can be related to the increasing Pb-X bond length from Cl to I. Our research opens up a potential pathway to predicting optoelectronic properties of new 2D HOIPs from ab initio calculations and to gain insight into structural relations from 2D HOIP absorption spectra.
Collapse
Affiliation(s)
- Svenja M Janke
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Mohammad B Qarai
- Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Volker Blum
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Frank C Spano
- Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
15
|
Aksu H, Schubert A, Bhandari S, Yamada A, Geva E, Dunietz BD. On the Role of the Special Pair in Photosystems as a Charge Transfer Rectifier. J Phys Chem B 2020; 124:1987-1994. [PMID: 32109062 DOI: 10.1021/acs.jpcb.9b11431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The special pair, a bacteriochlorophyll a (BChl) dimer found at the core of bacterial reaction centers, is known to play a key role in the functionality of photosystems as a precursor to the photosynthesis process. In this paper, we analyze the inherent affinity of the special pair to rectify the intrapair photo-induced charge transfer (CT). In particular, we show that the molecular environment affects the nuclear geometry, resulting in symmetry breaking between the two possible intrapair CT processes. To this end, we study the relationships of the intrapair CT and the molecular geometry with respect to the effective dielectric constant provided by the molecular environment. We identify the special pair structural feature that breaks the symmetry between the two molecules, leading to CT rectification. Excited state energies, oscillator strengths, and electronic coupling values are obtained via time-dependent density functional theory, employing a recently developed framework based on a screened range-separated hybrid functional within a polarizable continuum model (SRSH-PCM). We analyze the rectification capability of the special pair by calculating the CT rates using a first-principles-based Fermi's golden rule approach.
Collapse
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Alexander Schubert
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
16
|
Bold BM, Sokolov M, Maity S, Wanko M, Dohmen PM, Kranz JJ, Kleinekathöfer U, Höfener S, Elstner M. Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes. Phys Chem Chem Phys 2020; 22:10500-10518. [PMID: 31950960 DOI: 10.1039/c9cp05753f] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromophores of rhodopsins (Rh) and light-harvesting (LH) complexes still represent a major challenge for a quantum chemical description due to their size and complex electronic structure. Since gradient corrected and hybrid density functional approaches have been shown to fail for these systems, only range-separated functionals seem to be a promising alternative to the more time consuming post-Hartree-Fock approaches. For extended sampling of optical properties, however, even more approximate approaches are required. Recently, a long-range corrected (LC) functional has been implemented into the efficient density functional tight binding (DFTB) method, allowing to sample the excited states properties of chromophores embedded into proteins using quantum mechanical/molecular mechanical (QM/MM) with the time-dependent (TD) DFTB approach. In the present study, we assess the accuracy of LC-TD-DFT and LC-TD-DFTB for rhodopsins (bacteriorhodopsin (bR) and pharaonis phoborhodopsin (ppR)) and LH complexes (light-harvesting complex II (LH2) and Fenna-Matthews-Olson (FMO) complex). This benchmark study shows the improved description of the color tuning parameters compared to standard DFT functionals. In general, LC-TD-DFTB can exhibit a similar performance as the corresponding LC functionals, allowing a reliable description of excited states properties at significantly reduced cost. The two chromophores investigated here pose complementary challenges: while huge sensitivity to external field perturbation (color tuning) and charge transfer excitations are characteristic for the retinal chromophore, the multi-chromophoric character of the LH complexes emphasizes a correct description of inter-chromophore couplings, giving less importance to color tuning. None of the investigated functionals masters both systems simultaneously with satisfactory accuracy. LC-TD-DFTB, at the current stage, although showing a systematic improvement compared to TD-DFTB cannot be recommended for studying color tuning in retinal proteins, similar to some of the LC-DFT functionals, because the response to external fields is still too weak. For sampling of LH-spectra, however, LC-TD-DFTB is a viable tool, allowing to efficiently sample absorption energies, as shown for three different LH complexes. As the calculations indicate, geometry optimization may overestimate the importance of local minima, which may be averaged over when using trajectories. Fast quantum chemical approaches therefore may allow for a direct sampling of spectra in the near future.
Collapse
Affiliation(s)
- Beatrix M Bold
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kitoh-Nishioka H, Shigeta Y, Itoh S, Kimura A. Excitonic Coupling on a Heliobacterial Symmetrical Type-I Reaction Center: Comparison with Photosystem I. J Phys Chem B 2019; 124:389-403. [DOI: 10.1021/acs.jpcb.9b11290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
18
|
Aksu H, Schubert A, Geva E, Dunietz BD. Explaining Spectral Asymmetries and Excitonic Characters of the Core Pigment Pairs in the Bacterial Reaction Center Using a Screened Range-Separated Hybrid Functional. J Phys Chem B 2019; 123:8970-8975. [DOI: 10.1021/acs.jpcb.9b07646] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Huseyin Aksu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Alexander Schubert
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
19
|
|
20
|
|
21
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Scutelnic V, Prlj A, Zabuga A, Corminboeuf C, Rizzo TR. Infrared Spectroscopy as a Probe of Electronic Energy Transfer. J Phys Chem Lett 2018; 9:3217-3223. [PMID: 29847947 DOI: 10.1021/acs.jpclett.8b01216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have combined electronic and vibrational spectroscopy in a cryogenic ion trap to produce highly resolved, conformer-selective spectra for the ground and excited states of a peptide containing two chromophores. These spectra permit us to determine the precise three-dimensional structure of the peptide and give insight into the migration of the electronic excitation from phenylalanine to tyrosine because changes in the excited-state infrared spectra are sensitive to localization of the electronic energy in each chromophore. The well-controlled experimental conditions make this result a stringent test for theoretical methods dealing with electronic energy transfer.
Collapse
Affiliation(s)
- Valeriu Scutelnic
- Laboratory of Molecular Physical Chemistry , Ecole Polytechnique Fédérale de Lausanne , Station 6 , CH-1015 Lausanne , Switzerland
| | - Antonio Prlj
- Laboratory for Computational Molecular Design , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Aleksandra Zabuga
- Laboratory of Molecular Physical Chemistry , Ecole Polytechnique Fédérale de Lausanne , Station 6 , CH-1015 Lausanne , Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Thomas R Rizzo
- Laboratory of Molecular Physical Chemistry , Ecole Polytechnique Fédérale de Lausanne , Station 6 , CH-1015 Lausanne , Switzerland
| |
Collapse
|
23
|
Polyakov IV, Khrenova MG, Moskovsky AA, Shabanov BM, Nemukhin AV. Towards first-principles calculation of electronic excitations in the ring of the protein-bound bacteriochlorophylls. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Fornari RP, Rowe P, Padula D, Troisi A. Importance and Nature of Short-Range Excitonic Interactions in Light Harvesting Complexes and Organic Semiconductors. J Chem Theory Comput 2017. [DOI: 10.1021/acs.jctc.7b00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rocco P. Fornari
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick Rowe
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniele Padula
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alessandro Troisi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
25
|
López-Tarifa P, Liguori N, van den Heuvel N, Croce R, Visscher L. Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations. Phys Chem Chem Phys 2017; 19:18311-18320. [DOI: 10.1039/c7cp03284f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the coulomb coupling interactions of natural chromophores in the solubilised light harvesting complex II (LHCII) using DFT quantum chemistry calculations.
Collapse
Affiliation(s)
- P. López-Tarifa
- Amsterdam Center for Multiscale Modeling
- Dep. Theoretical Chemistry
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Nicoletta Liguori
- Laboratory of Biophysics of Photosynthesis
- Dep. Physics and Astronomy
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Naudin van den Heuvel
- Van 't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
- The Netherlands
| | - Roberta Croce
- Laboratory of Biophysics of Photosynthesis
- Dep. Physics and Astronomy
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| | - Lucas Visscher
- Amsterdam Center for Multiscale Modeling
- Dep. Theoretical Chemistry
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
| |
Collapse
|
26
|
Kjær C, Stockett MH, Pedersen BM, Nielsen SB. Strong Impact of an Axial Ligand on the Absorption by Chlorophyll a and b Pigments Determined by Gas-Phase Ion Spectroscopy Experiments. J Phys Chem B 2016; 120:12105-12110. [PMID: 27933942 DOI: 10.1021/acs.jpcb.6b10547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here, on the basis of photodissociation action spectroscopy, we establish that the redshift of the Soret absorption band due to binding of a negatively charged carboxylate (as present in aspartic acid and glutamic acid residues) is 0.1-0.2 eV for Chl a and b. This effect is almost enough to reproduce the well-known green color of plants and can account for the strong spectral variation between Chl's. The experimental data serve to benchmark future high-level calculations of excited-state energies. Finally, we demonstrate that complexes between Chl a and histidine, tagged by a quaternary ammonium ion, can be made in the gas phase by electrospray ionization, but more work is needed to produce enough ions for gas-phase spectroscopy.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus, Denmark
| | - Mark H Stockett
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus, Denmark
| | - Bjarke M Pedersen
- Department of Physics and Astronomy, Aarhus University , DK-8000 Aarhus, Denmark
| | | |
Collapse
|
27
|
Stross C, Van der Kamp MW, Oliver TAA, Harvey JN, Linden N, Manby FR. How Static Disorder Mimics Decoherence in Anisotropy Pump-Probe Experiments on Purple-Bacteria Light Harvesting Complexes. J Phys Chem B 2016; 120:11449-11463. [PMID: 27723973 DOI: 10.1021/acs.jpcb.6b09916] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anisotropy pump-probe experiments have provided insights into the character of excitons formed in photosynthetic complexes. Rapid decay in the observed anisotropy is cited as evidence of the strength of coupling of the excitonic degrees of freedom to their environment. Here we show that ensemble averaging over realistic model Hamiltonians leads to a rapid decay of anisotropy to a value close to the observed asymptote, and at a rate comparable to observed decay rates, even in the absence of coupling to the environment. While coupling to the environment will clearly play a role in the dynamics of such systems, our calculations suggest that caution is needed in deducing the strength of this coupling from anisotropy experiments. We also set out to clarify the nature of the quantum states and processes involved in the dynamics of such systems and the associated terminology.
Collapse
Affiliation(s)
- Clement Stross
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K.,School of Mathematics, University of Bristol , Bristol BS8 1TW, U.K
| | - Marc W Van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| | | | - Jeremy N Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K.,Department of Chemistry, KU Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Noah Linden
- School of Mathematics, University of Bristol , Bristol BS8 1TW, U.K
| | - Frederick R Manby
- Centre for Computational Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, U.K
| |
Collapse
|
28
|
Cupellini L, Jurinovich S, Campetella M, Caprasecca S, Guido CA, Kelly SM, Gardiner AT, Cogdell R, Mennucci B. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence. J Phys Chem B 2016; 120:11348-11359. [PMID: 27791372 DOI: 10.1021/acs.jpcb.6b06585] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The spectroscopic properties of light-harvesting (LH) antennae in photosyntehtic organisms represent a fingerprint that is unique for each specific pigment-protein complex. Because of that, spectroscopic observations are generally combined with structural data from X-ray crystallography to obtain an indirect representation of the excitonic properties of the system. Here, an alternative strategy is presented which goes beyond this empirical approach and introduces an ab initio computational description of both structural and electronic properties and their dependence on the temperature. The strategy is applied to the peripheral light-harvesting antenna complex (LH2) present in purple bacteria. By comparing this model with the one based on the crystal structure, a detailed, molecular level explanation of the absorption and circular dichroism (CD) spectra and their temperature dependence is achieved. The agreement obtained with the experiments at both low and room temperature lays the groundwork for an atomistic understanding of the excitation dynamics in the LH2 system.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Sandro Jurinovich
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Marco Campetella
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Caprasecca
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Ciro A Guido
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Sharon M Kelly
- Life Sciences Biomolecular Sci, Joseph Black Building, University of Glasgow , Glasgow G12 8QQ, Scotland
| | - Alastair T Gardiner
- Glasgow Biomedical Research Centre, Institute of Molecular Cell and Systems Biology, University of Glasgow , 126 University Place, Glasgow G12 8TA, Scotland
| | - Richard Cogdell
- Glasgow Biomedical Research Centre, Institute of Molecular Cell and Systems Biology, University of Glasgow , 126 University Place, Glasgow G12 8TA, Scotland
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa , Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
29
|
Baghbanzadeh S, Kassal I. Geometry, Supertransfer, and Optimality in the Light Harvesting of Purple Bacteria. J Phys Chem Lett 2016; 7:3804-3811. [PMID: 27610631 DOI: 10.1021/acs.jpclett.6b01779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The remarkable rotational symmetry of the photosynthetic antenna complexes of purple bacteria has long been thought to enhance their light harvesting and excitation energy transport. We study the role of symmetry by modeling hypothetical antennas whose symmetry is broken by altering the orientations of the bacteriochlorophyll pigments. We find that in both LH2 and LH1 complexes, symmetry increases energy transfer rates by enabling the cooperative, coherent process of supertransfer. The enhancement is particularly pronounced in the LH1 complex, whose natural geometry outperforms the average randomized geometry by 5.5 standard deviations, the most significant coherence-related enhancement found in a photosynthetic complex.
Collapse
Affiliation(s)
- Sima Baghbanzadeh
- Department of Physics, Sharif University of Technology , Tehran 11155-9161, Iran
- Centre for Engineered Quantum Systems and School of Mathematics and Physics, The University of Queensland , Brisbane Queensland 4072, Australia
- School of Physics, Institute for Research in Fundamental Sciences (IPM) , Tehran 19395-5531, Iran
| | - Ivan Kassal
- Centre for Engineered Quantum Systems and School of Mathematics and Physics, The University of Queensland , Brisbane Queensland 4072, Australia
| |
Collapse
|
30
|
Santos EJG, Wang WL. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects. NANOSCALE 2016; 8:15902-15910. [PMID: 27314747 DOI: 10.1039/c6nr02857h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.
Collapse
Affiliation(s)
- Elton J G Santos
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
31
|
Chandrasekaran S, Pothula KR, Kleinekathöfer U. Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex. J Phys Chem B 2016; 121:3228-3236. [DOI: 10.1021/acs.jpcb.6b05803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Karunakar Reddy Pothula
- Department of Physics and
Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and
Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
32
|
Zheng F, Jin M, Mančal T, Zhao Y. Study of Electronic Structures and Pigment–Protein Interactions in the Reaction Center of Thermochromatium tepidum with a Dynamic Environment. J Phys Chem B 2016; 120:10046-10058. [DOI: 10.1021/acs.jpcb.6b06628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fulu Zheng
- Division
of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Mengting Jin
- Division
of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Tomáš Mančal
- Faculty
of Mathematics and Physics, Charles University in Prague, Ke Karlovu
5, 121 16 Prague
2, Czech Republic
| | - Yang Zhao
- Division
of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
33
|
Padula D, Di Bari L, Pescitelli G. The “Case of Two Compounds with Similar Configuration but Nearly Mirror Image CD Spectra” Refuted. Reassignment of the Absolute Configuration of N-Formyl-3′,4′-dihydrospiro[indan-1,2′(1′H)-pyridine]. J Org Chem 2016; 81:7725-32. [DOI: 10.1021/acs.joc.6b01416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Padula
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi
13, 56124 Pisa, Italy
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, U.K
| | - Lorenzo Di Bari
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi
13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi
13, 56124 Pisa, Italy
| |
Collapse
|
34
|
Baghbanzadeh S, Kassal I. Distinguishing the roles of energy funnelling and delocalization in photosynthetic light harvesting. Phys Chem Chem Phys 2016; 18:7459-67. [PMID: 26899714 DOI: 10.1039/c6cp00104a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photosynthetic complexes improve the transfer of excitation energy from peripheral antennas to reaction centers in several ways. In particular, a downward energy funnel can direct excitons in the right direction, while coherent excitonic delocalization can enhance transfer rates through the cooperative phenomenon of supertransfer. However, isolating the role of purely coherent effects is difficult because any change to the delocalization also changes the energy landscape. Here, we show that the relative importance of the two processes can be determined by comparing the natural light-harvesting apparatus with counterfactual models in which the delocalization and the energy landscape are altered. Applied to the example of purple bacteria, our approach shows that although supertransfer does enhance the rates somewhat, the energetic funnelling plays the decisive role. Because delocalization has a minor role (and is sometimes detrimental), it is most likely not adaptive, being a side-effect of the dense chlorophyll packing that evolved to increase light absorption per reaction center.
Collapse
Affiliation(s)
- Sima Baghbanzadeh
- Department of Physics, Sharif University of Technology, Tehran, Iran and Centre for Engineered Quantum Systems, Centre for Quantum Computation and Communication Technology, and School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Ivan Kassal
- Centre for Engineered Quantum Systems, Centre for Quantum Computation and Communication Technology, and School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|