1
|
Mukherjee K, Palchowdhury S, Maroncelli M. Do Electrostatics Control the Diffusive Dynamics of Solitary Water? NMR and MD Studies of Water Translation and Rotation in Dipolar and Ionic Solvents. J Phys Chem B 2024; 128:3689-3706. [PMID: 38588535 DOI: 10.1021/acs.jpcb.3c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
NMR-based measurements of the diffusion coefficients and rotation times of solitary water and benzene at 300 K are reported in a diverse collection of 13 conventional organic solvents and 10 imidazolium ionic liquids. Proton chemical shifts of water are found to be correlated to water OH-stretching frequencies, confirming the importance of electrostatic interactions in these shifts. However, the influence of magnetic interactions in aromatic solvents renders chemical shifts a less reliable indicator of electrostatics. Diffusion coefficients (DB) and rotational correlation times (τB) of benzene in the solvents examined are accurately described as functions of viscosity (η) by DB ∝ η-0.81 and τB ∝ η0.64. Literature values of DB and τB in alkane and normal alcohols, which were not included among the solvents studied here, are systematically faster than predicted by these correlations, indicating that factors beyond solvent viscosity play a role in determining the friction on benzene. In contrast to benzene, water diffusion and rotation are poorly described in terms of viscosity alone, even in the dipolar and ionic solvents measured here. The present data and the substantial literature data already available on dilute water diffusion show a systematic dependence of DW on solvent polarity among isoviscous solvents. The aspect of solvent polarity most relevant to water dynamics is the ability of a solvent to accept hydrogen bonds from water, as conveniently quantified by the frequency of water's OH stretching band, ΔνOH. The friction on translation, ζtr = kBT/DW, and rotation, ζrot = kBTτW, are both well correlated by functions of the form ζ(η, ΔνOH) = a1ηa2 exp (a3ΔνOH), where the ai are adjustable parameters. Molecular dynamics simulations reveal a strong coupling between electrostatic and nonelectrostatic water-solvent interactions, which makes it impossible to dissect the friction on water into additive dielectric and hydrodynamic components. Simulations also provide a tentative explanation for the unusual form of the correlating function ζ(η, ΔνOH), at least in the case of ζrot.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sourav Palchowdhury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Fujii K, Kimura Y. Solvent Role of Ionic Liquids in Fundamental Chemical Reaction Dynamics Analyzed by Time-Resolved Spectroscopy. CHEM REC 2023; 23:e202200242. [PMID: 36634996 DOI: 10.1002/tcr.202200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Indexed: 01/14/2023]
Abstract
Ionic liquids (ILs), which are used as solvents for chemical reactions, are different from conventional organic solvents owing to their designability. Physicochemical parameters of the ILs, such as polarity and viscosity, that affect chemical equilibria and reaction kinetics can be tuned by changing the combination of anions and cations or by varying the lengths of the alkyl chains present in the cations. We were interested in knowing how these physicochemical parameters affect fundamental chemical reactions in ILs. Therefore, in this personal account, we investigate our recent work on two different photochemical reactions in ILs, namely excited-state intramolecular proton transfer of hydroxyflavone and photodissociation of aminodisulfide, using time-resolved spectroscopic techniques. Interestingly, the roles of the ILs in these chemical reactions are quite different. The effect of the cationic species of the ILs (i. e., the head groups and number of alkyl carbons) on the solvation environment upon photoexcitation and reaction rate are discussed.
Collapse
Affiliation(s)
- Kaori Fujii
- Faculty of Science and Engineering, Doshisha University, Kyotanabe-city, Kyoto 610-0321, Japan
| | - Yoshifumi Kimura
- Graduate School of Science and Engineering, Faculty of Science and Engineering, Doshisha University, Kyotanabe-city, Kyoto 610-0321, Japan
| |
Collapse
|
3
|
Fraenza CC, Greenbaum SG, Suarez SN. Nuclear Magnetic Resonance Relaxation Pathways in Electrolytes for Energy Storage. Int J Mol Sci 2023; 24:10373. [PMID: 37373520 PMCID: PMC10299207 DOI: 10.3390/ijms241210373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spin relaxation times have been an instrumental tool in deciphering the local environment of ionic species, the various interactions they engender and the effect of these interactions on their dynamics in conducting media. Of particular importance has been their application in studying the wide range of electrolytes for energy storage, on which this review is based. Here we highlight some of the research carried out on electrolytes in recent years using NMR relaxometry techniques. Specifically, we highlight studies on liquid electrolytes, such as ionic liquids and organic solvents; on semi-solid-state electrolytes, such as ionogels and polymer gels; and on solid electrolytes such as glasses, glass ceramics and polymers. Although this review focuses on a small selection of materials, we believe they demonstrate the breadth of application and the invaluable nature of NMR relaxometry.
Collapse
Affiliation(s)
- Carla C. Fraenza
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
| | - Steve G. Greenbaum
- Physics Department, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; (C.C.F.); (S.G.G.)
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Sophia N. Suarez
- Physics Department, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Physics Department, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
4
|
Nakajima S, Sumida H, Endo T, Kimura Y. Study on the Translational Diffusion of Transient Species in 1-Alkyl-3-methylimidazolium-Based Ionic Liquids by Transient Grating Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Satoshi Nakajima
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroki Sumida
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Takatsugu Endo
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| | - Yoshifumi Kimura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
- Division of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
5
|
Fonseca R, Vieira R, Sardo M, Marin-Montesinos I, Mafra L. Exploring Molecular Dynamics of Adsorbed CO 2 Species in Amine-Modified Porous Silica by Solid-State NMR Relaxation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12582-12591. [PMID: 35968194 PMCID: PMC9358655 DOI: 10.1021/acs.jpcc.2c02656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous studies on CO2 adsorbents have mainly addressed the identification and quantification of adsorbed CO2 species in amine-modified porous materials. Investigation of molecular motion of CO2 species in confinement has not been explored in depth yet. This work entails a comprehensive study of molecular dynamics of the different CO2 species chemi- and physisorbed at amine-modified silica materials through the determination of the rotating frame spin-lattice relaxation times (T 1ρ) by solid-state NMR. Rotational correlation times (τC) were also estimated using spin relaxation models based on the Bloch, Wangsness, and Redfield and the Bloembergen-Purcell-Pound theories. As expected, the τC values for the two physisorbed CO2 species are considerably shorter (32 and 20 μs) than for the three identified chemisorbed CO2 species (162, 62, and 123 μs). The differences in molecular dynamics between the different chemisorbed species correlate well with the structures previously proposed. In the case of the physisorbed CO2 species, the τC values of the CO2 species displaying faster molecular dynamics falls in the range of viscous liquids, whereas the species presenting slower dynamics exhibit T 1ρ and τC values compatible with a CO2 layer of weakly interacting molecules with the silica surface. The values for chemical shift anisotropy (CSA) and 1H-13C heteronuclear dipolar couplings have also been estimated from T 1ρ measurements, for each adsorbed CO2 species. The CSA tensor parameters obtained from fitting the relaxation data agree with the experimentally measured CSA values, thus showing that the theories are well suited to study CO2 dynamics in silica surfaces.
Collapse
Affiliation(s)
- Rita Fonseca
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ildefonso Marin-Montesinos
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO—Aveiro Institute of Materials,
Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Slade J, Merunka D, Huerta E, Peric M. Rotation of a Charged Spin Probe in Room-Temperature Ionic Liquids. J Phys Chem B 2021; 125:7435-7446. [PMID: 34197101 DOI: 10.1021/acs.jpcb.1c02471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-band electron paramagnetic resonance spectroscopy has been used to investigate the rotational diffusion of a stable, positively charged nitroxide 4-trimethylammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (Cat-1) in a series of 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) having alkyl chain lengths from two to eight carbons. The rotation of Cat-1 is anisotropic with the preferential axis of rotation along the NO• moiety. The Stokes-Einstein-Debye law describes the mean rotational correlation time of Cat-1, assuming that the hydrodynamic radius is smaller than the van der Waals radius of the probe. This implies that the probe rotates freely, experiencing slip boundary condition, which is solvent-dependent. The rotational correlation time of Cat-1 in RTILs can very well be fitted to a power-law functionality with a singular temperature, which suggests that the apparent activation energy of rotation exhibits non-Arrhenius behavior. Compared to the rotation of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO), which is neutral, the rotation of Cat-1 is several times slower. The rotational anisotropy, the ratio of the rotational times of pDTO and Cat-1, and the apparent activation energy indicate the transition from a homogeneously globular structure to a spongelike structure when the alkyl chain has four carbons, which is also observed in molecular dynamics computational studies. For the first time, we have been able to show that the rotational correlation time of a solute molecule can be analyzed in terms of the Cohen-Turnbull free volume theory. The Cohen-Turnbull theory fully describes the rotation of Cat-1 in all ionic liquids in the measured temperature range.
Collapse
Affiliation(s)
- Jakov Slade
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb HR-10000, Croatia
| | - Dalibor Merunka
- Division of Physical Chemistry, Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb HR-10000, Croatia
| | - Ezequiel Huerta
- Department of Physics and Astronomy and The Center for Biological Physics, California State University, Northridge, Northridge, California 91330, United States
| | - Miroslav Peric
- Department of Physics and Astronomy and The Center for Biological Physics, California State University, Northridge, Northridge, California 91330, United States
| |
Collapse
|
7
|
Amith WD, Araque JC, Margulis CJ. Relationship between the Relaxation of Ionic Liquid Structural Motifs and That of the Shear Viscosity. J Phys Chem B 2021; 125:6264-6271. [PMID: 34097825 PMCID: PMC8279556 DOI: 10.1021/acs.jpcb.1c03105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In a set of recent
articles, we have highlighted that friction
is highly inhomogeneous in a typical ionic liquid (IL) with charge
networks that are stiff and charge-depleted regions that are soft.
This has consequences not only for the dynamics of ILs but also for the transport properties of solutes
dissolved in them. In this article, we explore whether the family
of alkylimidazolium ILs coupled with bis(trifluoromethylsulfonyl)imide
(with similar Coulombic interactions but different alkyl tails), when
dynamically “equalized” by having a similar shear viscosity,
display q-dependent structural relaxation time scales
that are the same across the family. Our results show that this is
not the case, and in fact, the relaxation of in-network charge alternation
appears to be significantly affected by the presence of separate polar
and apolar domains. However, we also find that if one was to assign
weight factors to the relaxation of the structural motifs, charge
alternation always contributes about the same amount (between 62.1
and 66.3%) across systems to the running integral of the stress tensor
correlation function from which the shear viscosity is derived. Adjacency
correlations between positive and negative moieties also contribute
an identical amount if a prepeak is not present (about 38%) and a
slightly smaller amount (about 28%) when intermediate range order
exists. The prepeak only contributes about 6% to viscoelastic relaxation,
highlighting that the dynamics of the smaller scale motifs is the
most important.
Collapse
Affiliation(s)
| | - Juan C Araque
- School of Engineering, Benedictine College, Atchison, Kansas 66002, United States
| | - Claudio J Margulis
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
8
|
Miyabayashi H, Fujii K, Watanabe T, Matano Y, Endo T, Kimura Y. Excited-State Intramolecular Proton Transfer Reaction and Ground-State Hole Dynamics of 4'- N, N-Dialkylamino-3-hydroxyflavone in Ionic Liquids Studied by Transient Absorption Spectroscopy. J Phys Chem B 2021; 125:5373-5386. [PMID: 34003004 DOI: 10.1021/acs.jpcb.1c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The excited-state intramolecular proton transfer (ESIPT) of 4'-N,N-dialkylamino-3-hydroxyflavone (CnHF) having different alkyl chain lengths (ethyl, butyl, and octyl chains) was investigated in ionic liquids (ILs) by steady-state fluorescence and transient absorption spectroscopy. Upon photoexcitation, CnHF underwent ESIPT from the normal form to the tautomer form, and dual emissions from both states were detected. For C4HF and C8HF, the tautomerization yields determined from the fluorescence intensity ratios increased with the increasing number of alkyl chain carbon atoms in the cation and on reducing the excitation wavelength as reported for C2HF [K. Suda et al., J. Phys. Chem. B. 117, 12567 (2013)]. The transient absorption spectra of CnHF were measured at excitation wavelengths of 360, 400, and 450 nm. The ESIPT rate determined from the induced emission of the tautomer was correlated with the tautomerization yield for C2HF and C4HF. In addition, the recovery of the ground-state bleach was found to be strongly dependent on the excitation wavelength. This result indicates that the solvated state of the molecule before photoexcitation is dependent on the excitation wavelengths. The time constant for the ground-state relaxation was slower than that for the excited state.
Collapse
Affiliation(s)
- Hanamichi Miyabayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan
| | - Kaori Fujii
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan
| | - Takumi Watanabe
- Department of Chemistry, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Yoshihiro Matano
- Department of Chemistry, Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Takatsugu Endo
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan
| | - Yoshifumi Kimura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan
| |
Collapse
|
9
|
Endo T, Sumida H, Fujii K, Takahashi K, Kimura Y. Heterogeneous Structures of Ionic Liquids as Probed by CO Rotation with Nuclear Magnetic Resonance Relaxation Analysis and Molecular Dynamics Simulations. J Phys Chem B 2020; 124:10465-10476. [PMID: 33156634 DOI: 10.1021/acs.jpcb.0c08030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rotational dynamics of carbon monoxide (CO) in ionic liquids (ILs) was investigated by nuclear magnetic resonance (NMR) relaxation measurements and molecular dynamics (MD) simulations. NMR spin-lattice relaxation time measurements were performed for 17O-enriched CO in 10 ILs (four imidazolium-cation-based, four phosphonium-cation-based, and two ammonium-cation-based ILs, all paired with the bis(trifluorosulfonylmethane)imide anion). In combination with previously reported data for five ILs and viscosity data, our results indicated that the obtained rotational relaxation times (τ2R) were much smaller than those predicted using the Stokes-Einstein-Debye (SED) theory. For the same viscosity/temperature values, the τ2R-1 value increased linearly with increasing carbon number of the alkyl group in the cation. The deviation from the SED equation was due to the insensitivity of τ2R to the carbon number, even though a higher carbon number generally leads to higher viscosity values for ILs. To investigate the unique rotational properties of CO in the ILs, MD simulations were performed on five representative ILs (two imidazolium, two phosphonium, and one ammonium) containing CO solutes. From rotational correlation function analyses, the CO rotation mainly occurred in a free rotation-like manner within 1 ps, which explained the relative insensitivity of CO rotation to viscosity. In the subsequent time scale (>1 ps), the minor component of the CO rotation was discriminated among different ILs. It was strongly suggested that, because CO preferably locates in the outer part of the alkyl groups in the cation, the slow CO rotation is correlated with the outer alkyl dynamics, which are decoupled from the whole cation rotation.
Collapse
Affiliation(s)
- Takatsugu Endo
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Hiroki Sumida
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kaori Fujii
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kenji Takahashi
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshifumi Kimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan.,Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
10
|
Kimura Y. Solvation heterogeneity in ionic liquids as demonstrated by photo-chemical reactions. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
It has been recognised that ionic liquids (ILs) with long alkyl-chains have a segregated structure due to the inhomogeneous distribution of polar parts and non-polar parts. This inhomogeneity of ILs brings about unique solvation phenomena of solute molecules dissolved in ILs. We have investigated various solvation-state selective phenomena by using laser spectroscopic techniques such as solvation state selective vibrational spectroscopy, translational and rotational dynamics of small molecules in ILs, and solvation state selective fundamental chemical reactions. In this paper, we have reviewed an intramolecular electron transfer (ET) reaction in the Marcus inverted region of N,N-dimethyl-p-nitroaniline and an intramolecular proton transfer (IPT) reaction in 4′-N,N-diethylamino-3-hydroxyflavone as examples of chemical reactions affected by unique solvation in ILs.
Collapse
Affiliation(s)
- Yoshifumi Kimura
- Department of molecular science and biochemistry, Faculty of science and engineering , Doshisha University , Kyotanabe-city, Kyoto 610-0321 , Japan
| |
Collapse
|
11
|
Das S, Mukherjee B, Biswas R. Orientational dynamics in a room temperature ionic liquid: Are angular jumps predominant? J Chem Phys 2018; 148:193839. [DOI: 10.1063/1.5017797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Suman Das
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Biswaroop Mukherjee
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
- Thematic Unit for Excellence–Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
12
|
Strate A, Neumann J, Overbeck V, Bonsa AM, Michalik D, Paschek D, Ludwig R. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation. J Chem Phys 2018; 148:193843. [DOI: 10.1063/1.5011804] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anne Strate
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Jan Neumann
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Straße 21, D-18059 Rostock, Germany
| | - Viviane Overbeck
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Anne-Marie Bonsa
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
| | - Dirk Michalik
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, D-18059 Rostock, Germany
| | - Dietmar Paschek
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Straße 21, D-18059 Rostock, Germany
| | - Ralf Ludwig
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany
- Leibniz Institut für Katalyse an der Universität Rostock, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany
| |
Collapse
|
13
|
Daly RP, Araque JC, Margulis CJ. Communication: Stiff and soft nano-environments and the “Octopus Effect” are the crux of ionic liquid structural and dynamical heterogeneity. J Chem Phys 2017; 147:061102. [DOI: 10.1063/1.4990666] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ryan P. Daly
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
14
|
Rumble CA, Uitvlugt C, Conway B, Maroncelli M. Solute Rotation in Ionic Liquids: Size, Shape, and Electrostatic Effects. J Phys Chem B 2017; 121:5094-5109. [DOI: 10.1021/acs.jpcb.7b01704] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher A. Rumble
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Caleb Uitvlugt
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brian Conway
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mark Maroncelli
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
|
16
|
Rumble CA, Kaintz A, Yadav SK, Conway B, Araque JC, Baker GA, Margulis C, Maroncelli M. Rotational Dynamics in Ionic Liquids from NMR Relaxation Experiments and Simulations: Benzene and 1-Ethyl-3-Methylimidazolium. J Phys Chem B 2016; 120:9450-67. [DOI: 10.1021/acs.jpcb.6b06715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher A. Rumble
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anne Kaintz
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sharad K. Yadav
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian Conway
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Juan C. Araque
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gary A. Baker
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Claudio Margulis
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Mark Maroncelli
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Araque JC, Daly RP, Margulis CJ. A link between structure, diffusion and rotations of hydrogen bonding tracers in ionic liquids. J Chem Phys 2016; 144:204504. [DOI: 10.1063/1.4951012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juan C. Araque
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ryan P. Daly
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
18
|
Chaban VV, Prezhdo OV. Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds. J Phys Chem B 2016; 120:4302-9. [DOI: 10.1021/acs.jpcb.6b02405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vitaly V. Chaban
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, 12231-280, São José dos Campos, SP, Brazil
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|