Brielle ES, Arkin IT. Site-Specific Hydrogen Exchange in a Membrane Environment Analyzed by Infrared Spectroscopy.
J Phys Chem Lett 2018;
9:4059-4065. [PMID:
29957958 DOI:
10.1021/acs.jpclett.8b01675]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen exchange is a powerful method to examine macromolecules. In membrane proteins, exchange can distinguish between solvent-accessible and -inaccessible residues due to shielding by the hydrophobic environment of the lipid bilayer. Herein, rather than examining which residues undergo hydrogen exchange, we employ a protocol that enables the full deuteration of all polar hydrogens in a membrane protein. We then measure the impact of hydrogen exchange on the shift of the amide I vibrational mode of individually labeled sites. The results enable us to correlate polarity with vibrational shifts, thereby providing a powerful tool to examine specific locations within a membrane protein in its native membrane environment.
Collapse