1
|
Twarock R, Stockley PG. RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy. Annu Rev Biophys 2019; 48:495-514. [PMID: 30951648 PMCID: PMC7612295 DOI: 10.1146/annurev-biophys-052118-115611] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision-a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, and York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, United Kingdom;
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
2
|
Zeng C, Rodriguez Lázaro G, Tsvetkova IB, Hagan MF, Dragnea B. Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins. ACS NANO 2018; 12:5323-5332. [PMID: 29694012 PMCID: PMC6202266 DOI: 10.1021/acsnano.8b00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | | | - Irina B Tsvetkova
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Michael F Hagan
- Department of Physics , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
3
|
van der Holst B, Kegel WK, Zandi R, van der Schoot P. The different faces of mass action in virus assembly. J Biol Phys 2018; 44:163-179. [PMID: 29616429 PMCID: PMC5928020 DOI: 10.1007/s10867-018-9487-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
The spontaneous encapsulation of genomic and non-genomic polyanions by coat proteins of simple icosahedral viruses is driven, in the first instance, by electrostatic interactions with polycationic RNA binding domains on these proteins. The efficiency with which the polyanions can be encapsulated in vitro, and presumably also in vivo, must in addition be governed by the loss of translational and mixing entropy associated with co-assembly, at least if this co-assembly constitutes a reversible process. These forms of entropy counteract the impact of attractive interactions between the constituents and hence they counteract complexation. By invoking mass action-type arguments and a simple model describing electrostatic interactions, we show how these forms of entropy might settle the competition between negatively charged polymers of different molecular weights for co-assembly with the coat proteins. In direct competition, mass action turns out to strongly work against the encapsulation of RNAs that are significantly shorter, which is typically the case for non-viral (host) RNAs. We also find that coat proteins favor forming virus particles over nonspecific binding to other proteins in the cytosol even if these are present in vast excess. Our results rationalize a number of recent in vitro co-assembly experiments showing that short polyanions are less effective at attracting virus coat proteins to form virus-like particles than long ones do, even if both are present at equal weight concentrations in the assembly mixture.
Collapse
Affiliation(s)
- Bart van der Holst
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willem K Kegel
- Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, USA
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Li S, Erdemci-Tandogan G, van der Schoot P, Zandi R. The effect of RNA stiffness on the self-assembly of virus particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:044002. [PMID: 29235442 PMCID: PMC7104906 DOI: 10.1088/1361-648x/aaa159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 05/21/2023]
Abstract
Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States of America
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
5
|
Erdemci-Tandogan G, Orland H, Zandi R. RNA Base Pairing Determines the Conformations of RNA Inside Spherical Viruses. PHYSICAL REVIEW LETTERS 2017; 119:188102. [PMID: 29219580 DOI: 10.1103/physrevlett.119.188102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Indexed: 05/21/2023]
Abstract
Many simple RNA viruses enclose their genetic material by a protein shell called the capsid. While the capsid structures are well characterized for most viruses, the structure of RNA inside the shells and the factors contributing to it remain poorly understood. We study the impact of base pairing on the conformations of RNA and find that it undergoes a swollen coil to globule continuous transition as a function of the strength of the pairing interaction. We also observe a first order transition and kink profile as a function of RNA length. All these transitions could explain the different RNA profiles observed inside viral shells.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Henri Orland
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No. 10 East Xibeiwang Road, Haidan District, Beijing 100193, China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
6
|
Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA, Zhao G, Aiken C, Zandi R, Zhang P. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 2016; 7:13689. [PMID: 27958264 PMCID: PMC5159922 DOI: 10.1038/ncomms13689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation. Two competing models—disassembly/reassembly and displacive—have been proposed for how immature spherical HIV virions transform into mature particles with conical cores. Here the authors provide evidence that both disassembly/reassembly and displacive processes occur sequentially during the maturation process.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ernest L Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
7
|
Erdemci-Tandogan G, Wagner J, van der Schoot P, Podgornik R, Zandi R. Effects of RNA branching on the electrostatic stabilization of viruses. Phys Rev E 2016; 94:022408. [PMID: 27627336 DOI: 10.1103/physreve.94.022408] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 11/07/2022]
Abstract
Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a role in packaging. In particular, the sequence will determine the possible secondary structures that the ssRNA will take in solution. In this work, we use a mean-field theory to investigate how the secondary structure of the RNA combined with electrostatic interactions affects the efficiency of assembly and stability of the assembled virions. We show that the secondary structure of RNA may result in negative osmotic pressures while a linear polymer causes positive osmotic pressures for the same conditions. This may suggest that the branched structure makes the RNA more effectively packaged and the virion more stable.
Collapse
Affiliation(s)
- Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Rudolf Podgornik
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA.,Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia.,Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|