1
|
Šímová I, Chrupková P, Gardiner AT, Koblížek M, Kloz M, Polívka T. Femtosecond Stimulated Raman Spectroscopy of Linear Carotenoids. J Phys Chem Lett 2024; 15:7466-7472. [PMID: 39008850 DOI: 10.1021/acs.jpclett.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption data measured in a single experiment are used to determine the vibronic properties of the S1 state of linear carotenoids with different conjugation lengths. The Raman band corresponding to the C═C stretching mode in the S1 state peaks at 1799 cm-1 (neurosporene), 1802 cm-1 (spheroidene), and 1791 cm-1 (lycopene). Contrary to the ground state C═C mode, variation of the C═C stretching mode in the S1 state is small and does not follow a linear dependence on N. The lifetime of the Raman band matches the S1 decays obtained from transient absorption, confirming its S1 state origin. Direct comparison of transient absorption and FSRS signals allowed us to assign Raman signatures of nonrelaxed S1 and S0 states. For lycopene, FSRS data identified a component associated with a downshifted ground state C═C mode, which matches the dynamics of the S* signal observed in transient absorption data.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Petra Chrupková
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Li L, Huang D, Hu Y, Rudling NM, Canniffe DP, Wang F, Wang Y. Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle. Nat Commun 2023; 14:6450. [PMID: 37833297 PMCID: PMC10576062 DOI: 10.1038/s41467-023-42193-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Photosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction center appears in at least six Myxococcota families from three classes, suggesting vertical inheritance of these genes from an early common ancestor, with multiple independent losses in other lineages. Analysis of metatranscriptomic datasets indicate that the putative myxococcotal photosynthesis genes are actively expressed in various natural environments. Furthermore, heterologous expression of myxococcotal pigment biosynthesis genes in a purple bacterium supports that the genes can drive photosynthetic processes. Given that predatory abilities are thought to be widespread across Myxococcota, our results suggest the intriguing possibility of a chimeric lifestyle (combining predatory and photosynthetic abilities) in members of this phylum.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nicola M Rudling
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
The role of the γ subunit in the photosystem of the lowest-energy phototrophs. Biochem J 2022; 479:2449-2463. [PMID: 36534468 PMCID: PMC9788563 DOI: 10.1042/bcj20220508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Purple phototrophic bacteria use a 'photosystem' consisting of light harvesting complex 1 (LH1) surrounding the reaction centre (RC) that absorbs far-red-near-infrared light and converts it to chemical energy. Blastochloris species, which harvest light >1000 nm, use bacteriochlorophyll b rather than the more common bacteriochlorophyll a as their major photopigment, and assemble LH1 with an additional polypeptide subunit, LH1γ, encoded by multiple genes. To assign a role to γ, we deleted the four encoding genes in the model Blastochloris viridis. Interestingly, growth under halogen bulbs routinely used for cultivation yielded cells displaying an absorption maximum of 825 nm, similar to that of the RC only, but growth under white light yielded cells with an absorption maximum at 972 nm. HPLC analysis of pigment composition and sucrose gradient fractionation demonstrate that the white light-grown mutant assembles RC-LH1, albeit with an absorption maximum blue-shifted by 46 nm. Wavelengths between 900-1000 nm transmit poorly through the atmosphere due to absorption by water, so our results provide an evolutionary rationale for incorporation of γ; this polypeptide red-shifts absorption of RC-LH1 to a spectral range in which photons are of lower energy but are more abundant. Finally, we transformed the mutant with plasmids encoding natural LH1γ variants and demonstrate that the polypeptide found in the wild type complex red-shifts absorption back to 1018 nm, but incorporation of a distantly related variant results in only a moderate shift. This result suggests that tuning the absorption of RC-LH1 is possible and may permit photosynthesis past its current low-energy limit.
Collapse
|
4
|
Zhang Y, Qi CH, Yamano N, Wang P, Yu LJ, Wang-Otomo ZY, Zhang JP. Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll b-Type Core Light-Harvesting Antenna. J Phys Chem Lett 2022; 13:3534-3541. [PMID: 35420425 DOI: 10.1021/acs.jpclett.2c00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carotenoid (Car) in photosynthesis plays the major roles of accessary light harvesting and photoprotection, and the underlying structure-function relationship attracts continuing research interests. We have attempted to explore the dynamics of Car triplet excitation (3Car*) in the bacteriochlorophyll b (BChl b)-type light harvesting reaction center complex (LH1-RC) of photosynthetic bacterium Halorhodospira halochloris. We show that the LH1 antenna binds a single Car that was identified as a lycopene derivative. Although the Car is hardly visible in the LH1-RC stationary absorption, it shows up conspicuously in the triplet excitation profile with distinct vibronic features. This and the ultrafast formation of 3Car* on direct photoexcitation of Car unequivocally manifest the unimolecular singlet fission reaction of the Car. Moreover, the Car with even one molecule per complex is found to be rather effective in quenching 3BChl b*. The implications of different 3Car* formation mechanisms are discussed, and the self-photoprotection role of BChl b are proposed for this extremophilic species.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | | | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| |
Collapse
|
5
|
Canniffe DP, Thweatt JL, Gomez Maqueo Chew A, Hunter CN, Bryant DA. A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria. J Biol Chem 2018; 293:15233-15242. [PMID: 30126840 PMCID: PMC6166724 DOI: 10.1074/jbc.ra118.004672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1′,2′-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins: bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1′,2′-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis. Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI. Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.
Collapse
Affiliation(s)
- Daniel P Canniffe
- From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom, .,the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Jennifer L Thweatt
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Aline Gomez Maqueo Chew
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - C Neil Hunter
- From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Donald A Bryant
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and .,the Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
6
|
Lu Y, Goodson C, Blankenship RE, Gross ML. Primary and Higher Order Structure of the Reaction Center from the Purple Phototrophic Bacterium Blastochloris viridis: A Test for Native Mass Spectrometry. J Proteome Res 2018; 17:1615-1623. [PMID: 29466012 PMCID: PMC5911391 DOI: 10.1021/acs.jproteome.7b00897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction center (RC) from the phototrophic bacterium Blastochloris viridis was the first integral membrane protein complex to have its structure determined by X-ray crystallography and has been studied extensively since then. It is composed of four protein subunits, H, M, L, and C, as well as cofactors, including bacteriopheophytin (BPh), bacteriochlorophyll (BCh), menaquinone, ubiquinone, heme, carotenoid, and Fe. In this study, we utilized mass spectrometry-based proteomics to study this protein complex via bottom-up sequencing, intact protein mass analysis, and native MS ligand-binding analysis. Its primary structure shows a series of mutations, including an unusual alteration and extension on the C-terminus of the M-subunit. In terms of quaternary structure, proteins such as this containing many cofactors serve to test the ability to introduce native-state protein assemblies into the gas phase because the cofactors will not be retained if the quaternary structure is seriously perturbed. Furthermore, this specific RC, under native MS, exhibits a strong ability not only to bind the special pair but also to preserve the two peripheral BCh's.
Collapse
Affiliation(s)
- Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Carrie Goodson
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
7
|
Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN. Cryo-EM structure of the
Blastochloris viridis LH1–RC complex at 2.9 Å. Nature 2018; 556:203-208. [DOI: 10.1038/s41586-018-0014-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 11/09/2022]
|