1
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Khrapunov S, Waterman A, Persaud R, Chang EP. Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Biochemistry 2021; 60:3582-3595. [PMID: 34747601 DOI: 10.1021/acs.biochem.1c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Temperature adaptation is ubiquitous among all living organisms, yet the molecular basis for this process remains poorly understood. It can be assumed that for parasite-host systems, the same enzymes found in both organisms respond to the same selection factor (human body temperature) with similar structural changes. Herein, we report the existence of a reversible temperature-dependent structural transition for the glycolytic enzyme lactate dehydrogenase (LDH) from the malaria parasite Plasmodium falciparum (pfLDH) and human heart (hhLDH) occurring in the temperature range of human fever. This transition is observed for LDHs from psychrophiles, mesophiles, and moderate thermophiles in their operating temperature range. Thermodynamic analysis reveals unique thermodynamic signatures of the LDH-substrate complexes defining a specific temperature range to which human LDH is adapted and parasite LDH is not, despite their common mesophilic nature. The results of spectroscopic analysis combined with the available crystallographic data reveal the existence of an active center within pfLDH that imparts psychrophilic structural properties to the enzyme. This center consists of two pockets, one formed by the five amino acids (5AA insert) within the substrate specificity loop and the other by the active site, that mutually regulate one another in response to temperature and induce structural and functional changes in the Michaelis complex. Our findings pave the way toward a new strategy for malaria treatments and drug design using therapeutic agents that inactivate malarial LDH selectively at a specific temperature range of the cyclic malaria paroxysm.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Akiba Waterman
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Rudra Persaud
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| |
Collapse
|
3
|
Gerringer ME, Yancey PH, Tikhonova OV, Vavilov NE, Zgoda VG, Davydov DR. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. FEBS J 2020; 287:5394-5410. [PMID: 32250538 PMCID: PMC7818408 DOI: 10.1111/febs.15317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/15/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
We explore the principles of pressure tolerance in enzymes of deep-sea fishes using lactate dehydrogenases (LDH) as a case study. We compared the effects of pressure on the activities of LDH from hadal snailfishes Notoliparis kermadecensis and Pseudoliparis swirei with those from a shallow-adapted Liparis florae and an abyssal grenadier Coryphaenoides armatus. We then quantified the LDH content in muscle homogenates using mass-spectrometric determination of the LDH-specific conserved peptide LNLVQR. Existing theory suggests that adaptation to high pressure requires a decrease in volume changes in enzymatic catalysis. Accordingly, evolved pressure tolerance must be accompanied with an important reduction in the volume change associated with pressure-promoted alteration of enzymatic activity ( Δ V PP ∘ ). Our results suggest an important revision to this paradigm. Here, we describe an opposite effect of pressure adaptation-a substantial increase in the absolute value of Δ V PP ∘ in deep-living species compared to shallow-water counterparts. With this change, the enzyme activities in abyssal and hadal species do not substantially decrease their activity with pressure increasing up to 1-2 kbar, well beyond full-ocean depth pressures. In contrast, the activity of the enzyme from the tidepool snailfish, L. florae, decreases nearly linearly from 1 to 2500 bar. The increased tolerance of LDH activity to pressure comes at the expense of decreased catalytic efficiency, which is compensated with increased enzyme contents in high-pressure-adapted species. The newly discovered strategy is presumably used when the enzyme mechanism involves the formation of potentially unstable excited transient states associated with substantial changes in enzyme-solvent interactions.
Collapse
|
4
|
Abstract
The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
Collapse
|
5
|
Chen SH, Hiramatsu H. Tautomer Structures in Ketose-Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy. J Phys Chem B 2019; 123:10663-10671. [PMID: 31765151 DOI: 10.1021/acs.jpcb.9b08557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The acyclic form of monosaccharides exists in a structural equilibrium, with aldose having the aldehyde group and ketose the ketone group (ketose-aldose equilibrium). A basic catalyst facilitates their transformation, which affects the chemical properties of the monosaccharide. In this study, we investigated the ketose-aldose transformation of 1,3-dihydroxyacetone (1,3-DHA), one of the simplest systems of the ketose-aldose equilibrium. We examined the effects of piperidine as the basic catalyst and used IR electroabsorption spectroscopy to study the responses to an external electric field. We analyzed the changes in IR absorption by considering the changes in the molecular orientation and number of molecules in response to the external electric field. The results of the analysis revealed the permanent dipole moment μP, an angle η between μP and μT (the transition moment of the molecular vibration), and the equilibrium constants. The ketose-aldose transformation of 1,3-DHA can be explained in terms of the equilibrium of three states. In the presence of piperidine, a five-state equilibrium was concluded. On the basis of the experimental data, we propose plausible models of dihydroxyacetone, E-enediols, Z-enediol, or glyceraldehyde for each state. The results of our structural analysis of these tautomers provide a detailed understanding of the ketose-aldose transformation of acyclic saccharides and the effects of the basic catalyst.
Collapse
Affiliation(s)
- Szu-Hua Chen
- Department of Applied Chemistry and Institute of Molecular Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science , National Chiao Tung University , Hsinchu 30010 , Taiwan.,Center for Emergent Functional Matter Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
6
|
Affiliation(s)
- He Yin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Adam Grofe
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
7
|
Suzuki K, Maeda S, Morokuma K. Roles of Closed- and Open-Loop Conformations in Large-Scale Structural Transitions of l-Lactate Dehydrogenase. ACS OMEGA 2019; 4:1178-1184. [PMID: 31459393 PMCID: PMC6648161 DOI: 10.1021/acsomega.8b02813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/28/2018] [Indexed: 06/10/2023]
Abstract
The mechanism of l-lactate generation from pyruvate by l-lactate dehydrogenase (LDH) from the rabbit muscle was studied theoretically by the multistructural microiteration (MSM) method combined with the quantum mechanics/molecular mechanics (QM/MM)-ONIOM method, where the MSM method describes the MM environment as a weighted average of multiple different structures that are fully relaxed during geometry optimization or a reaction path calculation for the QM part. The results showed that the substrate binding and product states were stabilized only in the open-loop conformation of LDH and the reaction occurred in the closed-loop conformation. In other words, before and after the chemical reaction, a large-scale structural transition from the open-loop conformation to the closed-loop conformation and vice versa occurred. The closed-loop conformation stabilized the transition state of the reaction. In contrast, the open-loop conformation stabilized the substrate binding and final states. In other words, the closed- to open-loop transition at the substrate binding state urges capture of the substrate molecule, the subsequent open- to closed-loop transition promotes the product generation, and the final closed- to open-loop transition at the final state prevents the reverse reaction going back to the substrate binding state. It is thus suggested that the exchange of stability between the closed- and open-loop conformations at different states promotes the catalytic cycle.
Collapse
Affiliation(s)
- Kimichi Suzuki
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- Fukui
Institute for Fundamental Chemistry, Kyoto
University, Kyoto 606-8103, Japan
| | - Satoshi Maeda
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- Research
and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Hokkaido 001-0021, Japan
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto
University, Kyoto 606-8103, Japan
| |
Collapse
|
8
|
Schramm VL, Schwartz SD. Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence. Biochemistry 2018; 57:3299-3308. [PMID: 29608286 DOI: 10.1021/acs.biochem.8b00201] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A complete understanding of enzyme catalysis requires knowledge of both transition state features and the detailed motions of atoms that cause reactant molecules to form and traverse the transition state. The seeming intractability of the problem arises from the femtosecond lifetime of chemical transition states, preventing most experimental access. Computational chemistry is admirably suited to short time scale analysis but can be misled by inappropriate starting points or by biased assumptions. Kinetic isotope effects provide an experimental approach to transition state structure and a method for obtaining transition state analogues but, alone, do not inform how that transition state is reached. Enzyme structures with transition state analogues provide computational starting points near the transition state geometry. These well-conditioned starting points, combined with the unbiased computational method of transition path sampling, provide realistic atomistic motions involved in transition state formation and passage. In many, but not all, enzymatic systems, femtosecond local protein motions near the catalytic site are linked to transition state formation. These motions are not inherently revealed by most approaches of transition state theory, because transition state theory replaces dynamics with the statistics of the transition state. Experimental and theoretical convergence of the link between local catalytic site vibrational modes and catalysis comes from heavy atom ("Born-Oppenheimer") enzymes. Fully labeled and catalytic site local heavy atom labels perturb the probability of finding enzymatic transition states in ways that can be analyzed and predicted by transition path sampling. Recent applications of these experimental and computational approaches reveal how subpicosecond local catalytic site protein modes play important roles in creating the transition state.
Collapse
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry , University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
9
|
Khrapunov S, Chang E, Callender RH. Thermodynamic and Structural Adaptation Differences between the Mesophilic and Psychrophilic Lactate Dehydrogenases. Biochemistry 2017. [PMID: 28627164 DOI: 10.1021/acs.biochem.7b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamics of substrate binding and enzymatic activity of a glycolytic enzyme, lactate dehydrogenase (LDH), from both porcine heart, phLDH (Sus scrofa; a mesophile), and mackerel icefish, cgLDH (Chamapsocephalus gunnari; a psychrophile), were investigated. Using a novel and quite sensitive fluorescence assay that can distinguish protein conformational changes close to and distal from the substrate binding pocket, a reversible global protein structural transition preceding the high-temperature transition (denaturation) was surprisingly found to coincide with a marked change in enzymatic activity for both LDHs. A similar reversible structural transition of the active site structure was observed for phLDH but not for cgLDH. An observed lower substrate binding affinity for cgLDH compared to that for phLDH was accompanied by a larger contribution of entropy to ΔG, which reflects a higher functional plasticity of the psychrophilic cgLDH compared to that of the mesophilic phLDH. The natural osmolyte, trimethylamine N-oxide (TMAO), increases stability and shifts all structural transitions to higher temperatures for both orthologs while simultaneously reducing catalytic activity. The presence of TMAO causes cgLDH to adopt catalytic parameters like those of phLDH in the absence of the osmolyte. Our results are most naturally understood within a model of enzyme dynamics whereby different conformations of the enzyme that have varied catalytic parameters (i.e., binding and catalytic proclivity) and whose population profiles are temperature-dependent and influenced by osmolytes interconvert among themselves. Our results also show that adaptation can be achieved by means other than gene mutations and complements the synchronic evolution of the cellular milieu.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert H Callender
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Abstract
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Collapse
Affiliation(s)
- Stephen D Fried
- Proteins and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
11
|
Katava M, Maccarini M, Villain G, Paciaroni A, Sztucki M, Ivanova O, Madern D, Sterpone F. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase. Sci Rep 2017; 7:41092. [PMID: 28112231 PMCID: PMC5253740 DOI: 10.1038/srep41092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.
Collapse
Affiliation(s)
- Marina Katava
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marco Maccarini
- Univ. Grenoble Alpes - Laboratoire TIMC/IMAG UMR CNRS 5525, Grenoble Pavillon Taillefer Domaine de la merci, 38700 La Tronche, France
| | - Guillaume Villain
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Universitá di Perugia, via A. Pascoli, 06123 Perugia, Italy
| | - Michael Sztucki
- European Syncrotron Radiation Facility, 6, rue Jules Horowitz, 38042, Grenoble, France
| | - Oxana Ivanova
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, Germany
| | - Dominique Madern
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
12
|
Wang Z, Chang EP, Schramm VL. Triple Isotope Effects Support Concerted Hydride and Proton Transfer and Promoting Vibrations in Human Heart Lactate Dehydrogenase. J Am Chem Soc 2016; 138:15004-15010. [PMID: 27766841 DOI: 10.1021/jacs.6b09049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition path sampling simulations have proposed that human heart lactate dehydrogenase (LDH) employs protein promoting vibrations (PPVs) on the femtosecond (fs) to picosecond (ps) time scale to promote crossing of the chemical barrier. This chemical barrier involves both hydride and proton transfers to pyruvate to form l-lactate, using reduced nicotinamide adenine dinucleotide (NADH) as the cofactor. Here we report experimental evidence from three types of isotope effect experiments that support coupling of the promoting vibrations to barrier crossing and the coincidence of hydride and proton transfer. We prepared the native (light) LDH and a heavy LDH labeled with 13C, 15N, and nonexchangeable 2H (D) to perturb the predicted PPVs. Heavy LDH has slowed chemistry in single turnover experiments, supporting a contribution of PPVs to transition state formation. Both the [4-2H]NADH (NADD) kinetic isotope effect and the D2O solvent isotope effect were increased in dual-label experiments combining both NADD and D2O, a pattern maintained with both light and heavy LDHs. These isotope effects support concerted hydride and proton transfer for both light and heavy LDHs. Although the transition state barrier-crossing probability is reduced in heavy LDH, the concerted mechanism of the hydride-proton transfer reaction is not altered. This study takes advantage of triple isotope effects to resolve the chemical mechanism of LDH and establish the coupling of fs-ps protein dynamics to barrier crossing.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric P Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|