1
|
Kim C, Yun SR, Lee SJ, Kim SO, Lee H, Choi J, Kim JG, Kim TW, You S, Kosheleva I, Noh T, Baek J, Ihee H. Structural dynamics of protein-protein association involved in the light-induced transition of Avena sativa LOV2 protein. Nat Commun 2024; 15:6991. [PMID: 39143073 PMCID: PMC11324726 DOI: 10.1038/s41467-024-51461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
The Light-oxygen-voltage-sensing domain (LOV) superfamily, found in enzymes and signal transduction proteins, plays a crucial role in converting light signals into structural signals, mediating various biological mechanisms. While time-resolved spectroscopic studies have revealed the dynamics of the LOV-domain chromophore's electronic structures, understanding the structural changes in the protein moiety, particularly regarding light-induced dimerization, remains challenging. Here, we utilize time-resolved X-ray liquidography to capture the light-induced dimerization of Avena sativa LOV2. Our analysis unveils that dimerization occurs within milliseconds after the unfolding of the A'α and Jα helices in the microsecond time range. Notably, our findings suggest that protein-protein interactions (PPIs) among the β-scaffolds, mediated by helix unfolding, play a key role in dimerization. In this work, we offer structural insights into the dimerization of LOV2 proteins following structural changes in the A'α and Jα helices, as well as mechanistic insights into the protein-protein association process driven by PPIs.
Collapse
Affiliation(s)
- Changin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seong Ok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jungkweon Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Taeyoon Noh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jonghoon Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Im SH, Lepetit B, Mosesso N, Shrestha S, Weiss L, Nymark M, Roellig R, Wilhelm C, Isono E, Kroth PG. Identification of promoter targets by Aureochrome 1a in the diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1834-1851. [PMID: 38066674 PMCID: PMC10967249 DOI: 10.1093/jxb/erad478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/04/2023] [Indexed: 03/28/2024]
Abstract
Aureochromes (AUREOs) are unique blue light receptors and transcription factors found only in stramenopile algae. While each of the four AUREOs identified in the diatom Phaeodactylum tricornutum may have a specific function, PtAUREO1a has been shown to have a strong impact on overall gene regulation, when light changes from red to blue light conditions. Despite its significance, the molecular mechanism of PtAUREO1a is largely unexplored. To comprehend the overall process of gene regulation by PtAUREO1a, we conducted a series of in vitro and in vivo experiments, including pull-down assays, yeast one-hybrid experiments, and phenotypical characterization using recombinant PtAUREOs and diatom mutant lines expressing a modified PtAureo1a gene. We describe the distinct light absorption properties of four PtAUREOs and the formation of all combinations of their potential dimers. We demonstrate the capability of PtAUREO1a and 1b to activate the genes, diatom-specific cyclin 2, PtAureo1a, and PtAureo1c under both light and dark conditions. Using mutant lines expressing a modified PtAUREO1a protein with a considerably reduced light absorption, we found novel evidence that PtAUREO1a regulates the expression of PtLHCF15, which is essential for red light acclimation. Based on current knowledge, we present a working model of PtAUREO1a gene regulation properties.
Collapse
Affiliation(s)
- Soo Hyun Im
- Plant Ecophysiology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Bernard Lepetit
- Plant Ecophysiology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Molecular Stress Physiology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany
| | - Niccolò Mosesso
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Sandeep Shrestha
- Plant Ecophysiology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Laura Weiss
- Plant Ecophysiology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Robert Roellig
- Institute of Biology, Department of Plant Physiology, University of Leipzig, D-04103 Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, D-04103 Leipzig, Germany
| | - Erika Isono
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Peter G Kroth
- Plant Ecophysiology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
3
|
Tsuji A, Yamashita H, Hisatomi O, Abe M. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy. Sci Rep 2022; 12:12903. [PMID: 35941201 PMCID: PMC9359980 DOI: 10.1038/s41598-022-17228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Dimerization is critical for transcription factors (TFs) to bind DNA and regulate a wide variety of cellular functions; however, the molecular mechanisms remain to be completely elucidated. Here, we used high-speed atomic force microscopy (HS-AFM) to observe the dimerization process for a photoresponsive TF Photozipper (PZ), which consists of light–oxygen–voltage-sensing (LOV) and basic-region-leucine-zipper (bZIP) domains. HS-AFM visualized not only the oligomeric states of PZ molecules forming monomers and dimers under controlled dark–light conditions but also the domain structures within each molecule. Successive AFM movies captured the dimerization process for an individual PZ molecule and the monomer–dimer reversible transition during dark–light cycling. Detailed AFM images of domain structures in PZ molecules demonstrated that the bZIP domain entangled under dark conditions was loosened owing to light illumination and fluctuated around the LOV domain. These observations revealed the role of the bZIP domain in the dimerization processes of a TF.
Collapse
Affiliation(s)
- Akihiro Tsuji
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Osamu Hisatomi
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Lin C, Schneps CM, Chandrasekaran S, Ganguly A, Crane BR. Mechanistic insight into light-dependent recognition of Timeless by Drosophila Cryptochrome. Structure 2022; 30:851-861.e5. [PMID: 35397203 DOI: 10.1016/j.str.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Cryptochrome (CRY) entrains the fly circadian clock by binding to Timeless (TIM) in light. Undocking of a helical C-terminal tail (CTT) in response to photoreduction of the CRY flavin cofactor gates TIM recognition. We present a generally applicable select western-blot-free tagged-protein interaction (SWFTI) assay that allowed the quantification of CRY binding to TIM in dark and light. The assay was used to study CRY variants with residue substitutions in the flavin pocket and correlate their TIM affinities with CTT undocking, as measured by pulse-dipolar ESR spectroscopy and evaluated by molecular dynamics simulations. CRY variants with the CTT removed or undocked bound TIM constitutively, whereas those incapable of photoreduction bound TIM weakly. In response to the flavin redox state, two conserved histidine residues contributed to a robust on/off switch by mediating CTT interactions with the flavin pocket and TIM. Our approach provides an expeditious means to quantify the interactions of difficult-to-produce proteins.
Collapse
Affiliation(s)
- Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Connor M Schneps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Applications of Time-Resolved Thermodynamics for Studies on Protein Reactions. J 2022. [DOI: 10.3390/j5010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thermodynamics and kinetics are two important scientific fields when studying chemical reactions. Thermodynamics characterize the nature of the material. Kinetics, mostly based on spectroscopy, have been used to determine reaction schemes and identify intermediate species. They are certainly important fields, but they are almost independent. In this review, our attempts to elucidate protein reaction kinetics and mechanisms by monitoring thermodynamic properties, including diffusion in the time domain, are described. The time resolved measurements are performed mostly using the time resolved transient grating (TG) method. The results demonstrate the usefulness and powerfulness of time resolved studies on protein reactions. The advantages and limitations of this TG method are also discussed.
Collapse
|
6
|
Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics. Biophys Rev 2021; 13:1053-1059. [DOI: 10.1007/s12551-021-00868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
|
7
|
Nakasone Y, Terazima M. A Time-Resolved Diffusion Technique for Detection of the Conformational Changes and Molecular Assembly/Disassembly Processes of Biomolecules. Front Genet 2021; 12:691010. [PMID: 34276791 PMCID: PMC8278059 DOI: 10.3389/fgene.2021.691010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Biological liquid-liquid phase separation (LLPS) is driven by dynamic and multivalent interactions, which involves conformational changes and intermolecular assembly/disassembly processes of various biomolecules. To understand the molecular mechanisms of LLPS, kinetic measurements of the intra- and intermolecular reactions are essential. In this review, a time-resolved diffusion technique which has a potential to detect molecular events associated with LLPS is presented. This technique can detect changes in protein conformation and intermolecular interaction (oligomer formation, protein-DNA interaction, and protein-lipid interaction) in time domain, which are difficult to obtain by other methods. After the principle and methods for signal analyses are described in detail, studies on photoreactive molecules (intermolecular interaction between light sensor proteins and its target DNA) and a non-photoreactive molecule (binding and folding reaction of α-synuclein upon mixing with SDS micelle) are presented as typical examples of applications of this unique technique.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Terazima M. Spectrally Silent Protein Reaction Dynamics Revealed by Time-Resolved Thermodynamics and Diffusion Techniques. Acc Chem Res 2021; 54:2238-2248. [PMID: 33886281 DOI: 10.1021/acs.accounts.1c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological functions essentially consist of a series of chemical reactions, including intermolecular interactions, and also involve the cooperation of a number of biological molecules performing these reactions. To understand this function at the molecular level, all steps of the reactions must be elucidated. However, since the biosystems including the surrounding environment are notably large, the reactions have to be elucidated from several different approaches. A variety of techniques have been developed to obtain structural information, and the knowledge of the three-dimensional structure of biomolecules has increased dramatically. Contrarily, the current information on reaction dynamics, which is essential for understanding reactions, is still not enough. Although frequently used techniques, such as spectroscopy, have revealed several important processes of reactions, there are various hidden dynamics that are not detected by these methods (silent dynamics). For example, although water molecules are essential for bioreactions, dynamics of the protein-water interaction are very difficult to trace and spectrally silent. Transient association/dissociations of proteins with partner proteins are difficult to observe. Another important property to understand the reaction of proteins is fluctuations, which are random movements that do not change the average structure and energy. The importance of fluctuations has been pointed out in order to explain enzymatic activity; however, it is extremely difficult to detect changes in fluctuation during a reaction. In this Account, unique time-resolved methods, time-resolved thermodynamics, and time-resolved diffusion methods, both of which are able to detect silent dynamics in solution at physiological temperature, are described.Thermodynamic properties are important for characterizing materials, in particular, macromolecules such as biomolecules. Therefore, the data available regarding these properties, for several stable proteins, is abundant. However, it is almost impossible to characterize short-lived intermediate species in irreversible reactions using traditional thermodynamic techniques. Similarly, although the translational diffusion coefficient is a useful property to determine the protein size and intermolecular interactions, there have been no reports revealing reaction dynamics. The transient grating (TG) method enables us to measure these quantities in a time-resolved manner for a variety of irreversible reactions. With this method, it is now possible to study biomolecule reactions from the viewpoint of thermodynamic properties and diffusion, and to elucidate reaction dynamics that cannot be detected by other spectroscopic methods.Here, the principles of the methodologies used, their characteristic advantages, and their applications to protein reactions are described. The TG measurements of octopus rhodopsin revealed a spectrally hidden intermediate and determined an energetic profile along the reaction coordinate. This emphasizes that the measurement in solution, not for trapped intermediates, is important to characterize the reaction intermediates. The application of these methods to a blue light sensor PixD revealed many spectrally silent dynamics as well as the importance of fluctuation for the reaction. As an example of the time-resolved heat capacity change and transient thermal expansion measurements, the reaction of PYP was briefly described. The reaction scheme of another blue light sensor protein, phototropins, and a spectrally silent DNA binding process of EL222 were fully elucidated by the time-resolved diffusion method.
Collapse
Affiliation(s)
- Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
9
|
Mann M, Serif M, Wrobel T, Eisenhut M, Madhuri S, Flachbart S, Weber APM, Lepetit B, Wilhelm C, Kroth PG. The Aureochrome Photoreceptor PtAUREO1a Is a Highly Effective Blue Light Switch in Diatoms. iScience 2020; 23:101730. [PMID: 33235981 PMCID: PMC7670200 DOI: 10.1016/j.isci.2020.101730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Aureochromes represent a unique type of blue light photoreceptors that possess a blue light sensing flavin-binding LOV-domain and a DNA-binding bZIP domain, thus being light-driven transcription factors. The diatom Phaeodactylum tricornutum, a member of the essential marine primary producers, possesses four aureochromes (PtAUREO1a, 1b, 1c, 2). Here we show a dramatic change in the global gene expression pattern of P. tricornutum wild-type cells after a shift from red to blue light. About 75% of the genes show significantly changed transcript levels already after 10 and 60 min of blue light exposure, which includes genes of major transcription factors as well as other photoreceptors. Very surprisingly, this light-induced regulation of gene expression is almost completely inhibited in independent PtAureo1a knockout lines. Such a massive and fast transcriptional change depending on one single photoreceptor is so far unprecedented. We conclude that PtAUREO1a plays a key role in diatoms upon blue light exposure. Blue light induces a very fast transcriptional response in the diatom P. tricornutum This strong response is almost completely inhibited when Aureochrome 1a is absent The results imply a key role of PtAureo1a in blue light-induced responses in diatoms
Collapse
Affiliation(s)
- Marcus Mann
- Institut für Biologie, Universität Leipzig, 04009 Leipzig, Germany
| | - Manuel Serif
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Thomas Wrobel
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Shvaita Madhuri
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Samantha Flachbart
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernard Lepetit
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
10
|
Goett-Zink L, Klocke JL, Bögeholz LAK, Kottke T. In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells. J Biol Chem 2020; 295:11729-11741. [PMID: 32580943 PMCID: PMC7450117 DOI: 10.1074/jbc.ra120.013091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/21/2020] [Indexed: 12/19/2022] Open
Abstract
Proteins are usually studied in well-defined buffer conditions, which differ substantially from those within a host cell. In some cases, the intracellular environment has an impact on the mechanism, which might be missed by in vitro experiments. IR difference spectroscopy previously has been applied to study the light-induced response of photoreceptors and photoenzymes in vitro Here, we established the in-cell IR difference (ICIRD) spectroscopy in the transmission and attenuated total reflection configuration to investigate the light-induced response of soluble proteins in living bacterial cells. ICIRD spectroscopy on the light, oxygen, or voltage (LOV) domains of the blue light receptors aureochrome and phototropin revealed a suppression of the response of specific secondary structure elements, indicating that the intracellular environment affects LOV photoreceptor mechanisms in general. Moreover, in-cell fluorescence spectroscopy disclosed that the intracellular environment slows down the recovery of the light-induced flavin adduct. Segment-resolved ICIRD spectroscopy on basic-region leucine zipper (bZIP)-LOV of aureochrome 1a from the diatom Phaeodactylum tricornutum indicated a signal progression from the LOV sensor to the bZIP effector independent of unfolding of the connecting A'α-helix, an observation that stood in contrast to in vitro results. This deviation was recapitulated in vitro by emulating the intracellular environment through the addition of the crowding agent BSA, but not by sucrose polymers. We conclude that ICIRD spectroscopy is a noninvasive, label-free approach for assessing conformational changes in receptors in living cells at ambient conditions. As demonstrated, these near-native responses may deviate from the mechanisms established under in vitro conditions.
Collapse
Affiliation(s)
- Lukas Goett-Zink
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Jessica L Klocke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Lena A K Bögeholz
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
11
|
Kobayashi I, Nakajima H, Hisatomi O. Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1. Biochemistry 2020; 59:2592-2601. [PMID: 32567839 DOI: 10.1021/acs.biochem.0c00271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Light oxygen voltage-sensing (LOV) domains are widely found in photoreceptor proteins of plants, algae, fungi, and bacteria. Structural studies of LOV domains suggest that Phe and Gln residues located in the proximity of the chromophore undergo conformational changes upon illumination; however, the molecular mechanism associated with activation of the effector domain remains to be elucidated. Photozipper (PZ) protein is an N-terminally truncated aureochrome-1 comprising a LOV domain and a basic leucine zipper domain. Blue light (BL) induces PZ dimerization and subsequently increases its affinity for target DNA. In this study, we prepared PZ mutants with substitutions of F298 and Q317 and performed quantitative analyses in dark and light states. Substitutions of Q317 significantly reduced the light-induced changes in PZ affinity for the target DNA, especially in the case of the high affinities observed in the dark state. Upon illumination, all PZ mutants showed increased affinity for the target sequence, which demonstrated a clear correlation with the dimer fraction of each PZ mutant. These results suggest the existence of a conformational equilibrium and that its shift by a synergistic interaction between the chromophore and protein moiety probably enables BL-regulated switching of aureochrome-1.
Collapse
Affiliation(s)
- Itsuki Kobayashi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroto Nakajima
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Kalvaitis ME, Johnson LA, Mart RJ, Rizkallah P, Allemann RK. A Noncanonical Chromophore Reveals Structural Rearrangements of the Light-Oxygen-Voltage Domain upon Photoactivation. Biochemistry 2019; 58:2608-2616. [PMID: 31082213 PMCID: PMC7007005 DOI: 10.1021/acs.biochem.9b00255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Light-oxygen-voltage
(LOV) domains are increasingly used to engineer
photoresponsive biological systems. While the photochemical cycle
is well documented, the allosteric mechanism by which formation of
a cysteinyl-flavin adduct leads to activation is unclear. Via replacement
of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN)
in the Aureochrome1a (Au1a) transcription factor from Ochromonas
danica, a thermally stable cysteinyl-5dFMN adduct was generated.
High-resolution crystal structures (<2 Å) under different
illumination conditions with either FMN or 5dFMN chromophores reveal
three conformations of the highly conserved glutamine 293. An allosteric
hydrogen bond network linking the chromophore via Gln293 to the auxiliary
A′α helix is observed. With FMN, a “flip”
of the Gln293 side chain occurs between dark and lit states. 5dFMN
cannot hydrogen bond through the C5 position and proved to be unable
to support Au1a domain dimerization. Under blue light, the Gln293
side chain instead “swings” away in a conformation distal
to the chromophore and not previously observed in existing LOV domain
structures. Together, the multiple side chain conformations of Gln293
and functional analysis of 5dFMN provide new insight into the structural
requirements for LOV domain activation.
Collapse
Affiliation(s)
- Mindaugas E Kalvaitis
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Luke A Johnson
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Robert J Mart
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| | - Pierre Rizkallah
- School of Medicine , University Hospital Wales , Main Building, Heath Park , Cardiff CF14 4XN , United Kingdom
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , United Kingdom
| |
Collapse
|
13
|
Tateyama S, Kobayashi I, Hisatomi O. Target Sequence Recognition by a Light-Activatable Basic Leucine Zipper Factor, Photozipper. Biochemistry 2018; 57:6615-6623. [PMID: 30388362 DOI: 10.1021/acs.biochem.8b00995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photozipper (PZ) is a light-activatable basic leucine zipper (bZIP) protein composed of a bZIP domain and a light-oxygen-voltage-sensing domain of aureochrome-1. Blue light induces dimerization and subsequently increases the affinity of PZ for the target DNA sequence. We prepared site-directed PZ mutants in which Asn131 (N131) in the basic region was substituted with Ala and Gln. N131 mutants showed spectroscopic and dimerization properties almost identical to those of wild-type PZ and an increase in helical content in the presence of the target sequence. Quantitative analyses by an electrophoretic mobility shift assay and quartz crystal microbalance (QCM) measurements demonstrated that the half-maximal effective concentrations of N131 mutants to bind to the target sequence were significantly higher than those of PZ. QCM data also revealed that N131 substitutions accelerated the dissociation without affecting the association, suggesting that a base-specific interaction of N131 occurred after the association between PZ and DNA. Activation of PZ by illumination decreased both the standard errors and the unstable period of QCM data. Optical control of transcription factors will provide new knowledge of the recognition of the target sequence.
Collapse
Affiliation(s)
- Samu Tateyama
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| | - Itsuki Kobayashi
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
14
|
Matiiv AB, Chekunova EM. Aureochromes - Blue Light Receptors. BIOCHEMISTRY (MOSCOW) 2018; 83:662-673. [PMID: 30195323 DOI: 10.1134/s0006297918060044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A variety of living organisms including bacteria, fungi, animals, and plants use blue light (BL) to adapt to changing ambient light. Photosynthetic forms (plants and algae) require energy of light for photosynthesis, movements, development, and regulation of activity. Several complex light-sensitive systems evolved in eukaryotic cells to use the information of light efficiently with photoreceptors selectively absorbing various segments of the solar spectrum, being the first components in the light signal transduction chain. They are most diverse in algae. Photosynthetic stramenopiles, which received chloroplasts from red algae during secondary symbiosis, play an important role in ecosystems and aquaculture, being primary producers. These taxa acquired the ability to use BL for regulation of such processes as phototropism, chloroplast photo-relocation movement, and photomorphogenesis. A new type of BL receptor - aureochrome (AUREO) - was identified in Vaucheria frigida in 2007. AUREO consists of two domains: bZIP (basic-region leucine zipper) domain and LOV (light-oxygen-voltage-sensing) domain, and thus this photoreceptor is a BL-sensitive transcription factor. This review presents current data on the structure, mechanisms of action, and biochemical features of aureochromes.
Collapse
Affiliation(s)
- A B Matiiv
- St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia
| | - E M Chekunova
- St. Petersburg State University, Faculty of Biology, St. Petersburg, 199034, Russia.
| |
Collapse
|
15
|
Tsukuno H, Ozeki K, Kobayashi I, Hisatomi O, Mino H. Flavin-Radical Formation in the Light-Oxygen-Voltage-Sensing Domain of the Photozipper Blue-light Sensor Protein. J Phys Chem B 2018; 122:8819-8823. [PMID: 30157376 DOI: 10.1021/acs.jpcb.8b05808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formation of the neutral flavin radical in the light-oxygen-voltage-sensing (LOV-sensing) domain of photozipper, based on VfAUREO1, was investigated by electron paramagnetic resonance spectroscopy. The flavin radical was observed in the presence of dithiothreitol by illumination of a LOV-domain mutant (C254S), in which a photoactive cysteine residue in close proximity to flavin was replaced with a serine. The radical did not form under low initial protein-concentration conditions (less than 20 μM). The flavin radicals accumulated with logistic time-dependent kinetics when the protein concentrations were higher than 30 μM. These results indicate that the radical is produced by concerted reactions involving protein interactions and that the radical is formed from the LOV dimer but not the LOV monomer. In contrast, logistic time dependencies were not observed for the sample adapted to the dark following radical formation by illumination, indicating that initialization of the proton pathway is essential for this fast sensing reaction.
Collapse
Affiliation(s)
- Hiroyuki Tsukuno
- Division of Material Science, Graduate School of Science , Nagoya University , Chikusa-ku, Furo-cho, Nagoya 464-8602 , Japan
| | - Kohei Ozeki
- Division of Material Science, Graduate School of Science , Nagoya University , Chikusa-ku, Furo-cho, Nagoya 464-8602 , Japan
| | - Itsuki Kobayashi
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Osaka 560-0043 , Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science , Osaka University , Osaka 560-0043 , Japan
| | - Hiroyuki Mino
- Division of Material Science, Graduate School of Science , Nagoya University , Chikusa-ku, Furo-cho, Nagoya 464-8602 , Japan
| |
Collapse
|
16
|
Takakado A, Nakasone Y, Terazima M. Sequential DNA Binding and Dimerization Processes of the Photosensory Protein EL222. Biochemistry 2018; 57:1603-1610. [DOI: 10.1021/acs.biochem.7b01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akira Takakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Nakatani Y, Hisatomi O. Quantitative analyses of the equilibria among DNA complexes of a blue-light-regulated bZIP module, Photozipper. Biophys Physicobiol 2018; 15:8-17. [PMID: 29450110 PMCID: PMC5812316 DOI: 10.2142/biophysico.15.0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023] Open
Abstract
Aureochrome1 is a blue-light-receptor protein identified in a stramenopile alga, Vaucheria frigida. Photozipper (PZ) is an N-terminally truncated, monomeric, V. frigida aureochrome1 fragment containing a basic leucine zipper (bZIP) domain and a light–oxygen–voltage (LOV)-sensing domain. PZ dimerizes upon photoexcitation and consequently increases its affinity for the target sequence. In the present study, to understand the equilibria among DNA complexes of PZ, DNA binding by PZ and mutational variants was quantitatively investigated by electrophoretic-mobility-shift assay and fluorescence-correlation spectroscopy in the dark and light states. DNA binding by PZ was sequence-specific and light-dependent. The half-maximal effective concentration of PZ for binding to the target DNA sequence was ~40 nM in the light, which was >10-fold less than the value in the dark. By contrast, the dimeric PZ-S2C variant (with intermolecular disulfide bonds) had higher affinity for the target sequence, with dissociation constants of ~4 nM, irrespective of the light conditions. Substitutions of Glu159 and Lys164 in the leucine zipper region decreased the affinity of PZ for the target sequence, especially in the light, suggesting that these residues form inter-helical salt bridges between leucine zipper regions, stabilizing the dimer–DNA complex. Our quantitative analyses of the equilibria in PZ–DNA-complex formation suggest that the blue-light-induced dimerization of LOV domains and coiled-coil formation by leucine zipper regions are the primary determinants of the affinity of PZ for the target sequence.
Collapse
Affiliation(s)
- Yoichi Nakatani
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Hisatomi
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Essen LO, Franz S, Banerjee A. Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:27-37. [PMID: 28756992 DOI: 10.1016/j.jplph.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Blue-light reception plays a pivotal role for algae to adapt to changing environmental conditions. In this review we summarize the current structural and mechanistic knowledge about flavin-dependent algal photoreceptors. We especially focus on the cryptochrome and aureochrome type photoreceptors in the context of their evolutionary divergence. Despite similar photochemical characteristics to orthologous photoreceptors from higher plants and animals the algal blue-light photoreceptors have developed a set of unique structural and mechanistic features that are summarized below.
Collapse
Affiliation(s)
- Lars-Oliver Essen
- Department of Biochemistry, Philipps-University, 35043 Marburg, Germany; LOEWE Center for Synthetic Microbiology, Philipps-University, 35043 Marburg, Germany.
| | - Sophie Franz
- Department of Biochemistry, Philipps-University, 35043 Marburg, Germany
| | - Ankan Banerjee
- Department of Biochemistry, Philipps-University, 35043 Marburg, Germany
| |
Collapse
|
19
|
Kroth PG, Wilhelm C, Kottke T. An update on aureochromes: Phylogeny - mechanism - function. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:20-26. [PMID: 28797596 DOI: 10.1016/j.jplph.2017.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 05/20/2023]
Abstract
Light is important for algae, as it warrants metabolic independence via photosynthesis. In addition to the absorption of light by the photosystems, algae possess a variety of specific photoreceptors that allow the quantification of the light fluxes as well as the assessment of light qualities. About a decade ago, aureochromes have been described in the xanthophyte alga Vaucheria frigida. These proteins represent a new type of blue light photoreceptor as they possess both a light-oxygen-voltage (LOV) domain for light reception as well as a basic region leucine zipper (bZIP) domain for DNA binding, indicating that they represent light-driven transcription factors. Aureochromes so far have been detected only in a single group of algae, photosynthetic stramenopiles, but not in any other prokaryotic or eukaryotic organisms. Recent biophysical work on aureochromes in the absence and the presence of DNA revealed the mechanism of allosteric communication between the sensor and effector domains despite their unusual inversed arrangement. Different molecular models have been proposed to describe the effect of light on DNA binding. Functional characterization of mutants of the diatom Phaeodactylum tricornutum, in which the aureochrome genes have been silenced or deleted, indicate that different aureochromes may have different functions, being involved in central processes like light acclimation and regulation of the cell cycle.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Tilman Kottke
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Takakado A, Nakasone Y, Terazima M. Photoinduced dimerization of a photosensory DNA-binding protein EL222 and its LOV domain. Phys Chem Chem Phys 2017; 19:24855-24865. [DOI: 10.1039/c7cp03686h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blue light sensor protein EL222, which regulates DNA-binding affinity, exhibits photoinduced dimerization in the absence of target DNA.
Collapse
Affiliation(s)
- Akira Takakado
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Yusuke Nakasone
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| | - Masahide Terazima
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8502
- Japan
| |
Collapse
|