1
|
Mahato DR, Andersson M. Dynamic lipid interactions in the plasma membrane Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119545. [PMID: 37481079 DOI: 10.1016/j.bbamcr.2023.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The function of ion-transporting Na+,K+-ATPases depends on the surrounding lipid environment in biological membranes. Two established lipid-interaction sites A and B within the transmembrane domain have been observed to induce protein activation and stabilization, respectively. In addition, lipid-mediated inhibition has been assigned to a site C, but with the exact location not experimentally confirmed. Also, possible effects on lipid interactions by disease mutants dwelling in the membrane-protein interface remain relatively uncharacterized. We simulated human Na+,K+-ATPase α1β1FXYD homology models in E1 and E2 states in an asymmetric, multicomponent plasma membrane to determine both wild-type and disease mutant lipid-protein interactions. The simulated wild-type lipid interactions at the established sites A and B were in agreement with experimental results thereby confirming the membrane-protein model system. The less well-characterized, proposed inhibitory site C was dominated by lipids lacking inhibitory properties. Instead, two sites hosting inhibitory lipids were identified at the extracellular side and also a cytoplasmic CHL-binding site that provide putative alternative locations of Na+,K+-ATPase inhibition. Three disease mutations, Leu302Arg, Glu840Arg and Met859Arg resided in the lipid-protein interface and caused drastic changes in the lipid interactions. The simulation results show that lipid interactions to the human Na+,K+-ATPase α1β1FXYD protein in the plasma membrane are highly state-dependent and can be disturbed by disease mutations located in the lipid interface, which can open up for new venues to understand genetic disorders.
Collapse
Affiliation(s)
- Dhani Ram Mahato
- Department of Chemistry, Umeå University, Umeå, Sweden; Institut de Química Computacional i Catàlisi, Universitat de Girona, Girona, 17003, Spain
| | | |
Collapse
|
2
|
Henning P, Köster T, Haack F, Burrage K, Uhrmacher AM. Implications of different membrane compartmentalization models in particle-based in silico studies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221177. [PMID: 37416823 PMCID: PMC10320350 DOI: 10.1098/rsos.221177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Studying membrane dynamics is important to understand the cellular response to environmental stimuli. A decisive spatial characteristic of the plasma membrane is its compartmental structure created by the actin-based membrane-skeleton (fences) and anchored transmembrane proteins (pickets). Particle-based reaction-diffusion simulation of the membrane offers a suitable temporal and spatial resolution to analyse its spatially heterogeneous and stochastic dynamics. Fences have been modelled via hop probabilities, potentials or explicit picket fences. Our study analyses the different approaches' constraints and their impact on simulation results and performance. Each of the methods comes with its own constraints; the picket fences require small timesteps, potential fences might induce a bias in diffusion in crowded systems, and probabilistic fences, in addition to carefully scaling the probability with the timesteps, induce higher computational costs for each propagation step.
Collapse
Affiliation(s)
- Philipp Henning
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Till Köster
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Oliveira MC, Yusupov M, Bogaerts A, Cordeiro RM. Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study. Arch Biochem Biophys 2022; 717:109136. [DOI: 10.1016/j.abb.2022.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
4
|
Ygberg S, Akkuratov EE, Howard RJ, Taylan F, Jans DC, Mahato DR, Katz A, Kinoshita PF, Portal B, Nennesmo I, Lindskog M, Karlish SJD, Andersson M, Lindstrand A, Brismar H, Aperia A. A missense mutation converts the Na +,K +-ATPase into an ion channel and causes therapy-resistant epilepsy. J Biol Chem 2021; 297:101355. [PMID: 34717959 PMCID: PMC8637647 DOI: 10.1016/j.jbc.2021.101355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.
Collapse
Affiliation(s)
- Sofia Ygberg
- Neuropediatric Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Stockholm, Sweden
| | - Evgeny E Akkuratov
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca J Howard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Jans
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | | | - Adriana Katz
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovoth, Israel
| | - Paula F Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Benjamin Portal
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Steven J D Karlish
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovoth, Israel
| | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden; Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Gu RX, Baoukina S, Tieleman DP. Phase Separation in Atomistic Simulations of Model Membranes. J Am Chem Soc 2020; 142:2844-2856. [DOI: 10.1021/jacs.9b11057] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Svetlana Baoukina
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
6
|
Rajagopal N, Irudayanathan FJ, Nangia S. Computational Nanoscopy of Tight Junctions at the Blood-Brain Barrier Interface. Int J Mol Sci 2019; 20:E5583. [PMID: 31717316 PMCID: PMC6888702 DOI: 10.3390/ijms20225583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The selectivity of the blood-brain barrier (BBB) is primarily maintained by tight junctions (TJs), which act as gatekeepers of the paracellular space by blocking blood-borne toxins, drugs, and pathogens from entering the brain. The BBB presents a significant challenge in designing neurotherapeutics, so a comprehensive understanding of the TJ architecture can aid in the design of novel therapeutics. Unraveling the intricacies of TJs with conventional experimental techniques alone is challenging, but recently developed computational tools can provide a valuable molecular-level understanding of TJ architecture. We employed the computational methods toolkit to investigate claudin-5, a highly expressed TJ protein at the BBB interface. Our approach started with the prediction of claudin-5 structure, evaluation of stable dimer conformations and nanoscale assemblies, followed by the impact of lipid environments, and posttranslational modifications on these claudin-5 assemblies. These led to the study of TJ pores and barriers and finally understanding of ion and small molecule transport through the TJs. Some of these in silico, molecular-level findings, will need to be corroborated by future experiments. The resulting understanding can be advantageous towards the eventual goal of drug delivery across the BBB. This review provides key insights gleaned from a series of state-of-the-art nanoscale simulations (or computational nanoscopy studies) performed on the TJ architecture.
Collapse
Affiliation(s)
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Yu Y, Li M, Yu Y. Tracking Single Molecules in Biomembranes: Is Seeing Always Believing? ACS NANO 2019; 13:10860-10868. [PMID: 31589406 PMCID: PMC7179047 DOI: 10.1021/acsnano.9b07445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The spatial organization of molecules in cell membranes and their dynamic interactions play a central role in regulating cell functions. Single-particle tracking (SPT), a technique in which single molecules are imaged and tracked in real time, has led to breakthrough discoveries regarding these spatiotemporal complexities of cell membranes. There are, however, emerging concerns about factors that might produce misleading interpretations of SPT results. Here, we briefly review the application of SPT to understanding the nanoscale heterogeneities of plasma membranes, with a focus on the unique challenges, pitfalls, and limitations that confront the use of nanoparticles as imaging probes for tracking the dynamics of single molecules in cell membranes.
Collapse
|
8
|
Rajagopal N, Nangia S. Obtaining Protein Association Energy Landscape for Integral Membrane Proteins. J Chem Theory Comput 2019; 15:6444-6455. [DOI: 10.1021/acs.jctc.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, 343 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
9
|
Membrane Dynamics in Health and Disease: Impact on Cellular Signalling. J Membr Biol 2019; 252:213-226. [PMID: 31435696 DOI: 10.1007/s00232-019-00087-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Biological membranes display a staggering complexity of lipids and proteins orchestrating cellular functions. Superior analytical tools coupled with numerous functional cellular screens have enabled us to query their role in cellular signalling, trafficking, guiding protein structure and function-all of which rely on the dynamic membrane lipid properties indispensable for proper cellular functions. Alteration of these has led to emergence of various pathological conditions, thus opening an area of lipid-centric therapeutic approaches. This perspective is a short summary of the dynamic properties of membranes essential for proper cellular functions, dictating both protein and lipid functions, and mis-regulated in diseases. Towards the end, we focus on some challenges lying ahead and potential means to tackle the same, mainly underscored by multi-disciplinary approaches.
Collapse
|
10
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
11
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
12
|
Ladefoged LK, Zeppelin T, Schiøtt B. Molecular modeling of neurological membrane proteins − from binding sites to synapses. Neurosci Lett 2019; 700:38-49. [DOI: 10.1016/j.neulet.2018.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023]
|
13
|
Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J 2019; 116:1085-1094. [PMID: 30846364 DOI: 10.1016/j.bpj.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.
Collapse
Affiliation(s)
- Helena L E Coker
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Matthew R Cheetham
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute & Department of Physics, University of Exeter, Exeter, United Kingdom
| | - Yong J Wang
- Department of Physics, King's College London, London, United Kingdom
| | | | - Mark I Wallace
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|
14
|
Weatherill EE, Coker HLE, Cheetham MR, Wallace MI. Urea-mediated anomalous diffusion in supported lipid bilayers. Interface Focus 2018; 8:20180028. [PMID: 30443327 PMCID: PMC6227775 DOI: 10.1098/rsfs.2018.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 12/16/2022] Open
Abstract
Diffusion in biological membranes is seldom simply Brownian motion; instead, the rate of diffusion is dependent on the time scale of observation and so is often described as anomalous. In order to help better understand this phenomenon, model systems are needed where the anomalous diffusion of the lipid bilayer can be tuned and quantified. We recently demonstrated one such model by controlling the excluded area fraction in supported lipid bilayers (SLBs) through the incorporation of lipids derivatized with polyethylene glycol. Here, we extend this work, using urea to induce anomalous diffusion in SLBs. By tuning incubation time and urea concentration, we produce bilayers that exhibit anomalous behaviour on the same scale as that observed in biological membranes.
Collapse
Affiliation(s)
- E. E. Weatherill
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - H. L. E. Coker
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - M. R. Cheetham
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
- Cavendish Laboratory, Department of Physics, NanoPhotonics Centre, University of Cambridge, Cambridge CB3 0HE, UK
| | - M. I. Wallace
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
15
|
Lyman E, Hsieh CL, Eggeling C. From Dynamics to Membrane Organization: Experimental Breakthroughs Occasion a "Modeling Manifesto". Biophys J 2018; 115:595-604. [PMID: 30075850 PMCID: PMC6103736 DOI: 10.1016/j.bpj.2018.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
New experimental techniques, especially in the context of observing molecular dynamics, reveal the plasma membrane to be heterogeneous and "scale rich," from nanometers to microns and from microseconds to seconds. This is critical information, which shows that scale-dependent transport governs the molecular encounters that underlie cellular signaling. The data are rich and reaffirm the importance of the cortical cytoskeleton, protein aggregates, and lipidomic complexity on the statistics of molecular encounters. Moreover, the data demand simulation approaches with a particular set of features, hence the "manifesto." Together with the experimental data, simulations that satisfy these requirements hold the promise of a deeper understanding of membrane spatiotemporal organization. Several experimental breakthroughs in measuring molecular membrane dynamics are reviewed, the constraints that they place on simulations are discussed, and the status of simulation approaches that aim to meet them are detailed.
Collapse
Affiliation(s)
- Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Institute of Applied Optics, Friedrich-Schiller-University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany
| |
Collapse
|
16
|
Vögele M, Köfinger J, Hummer G. Hydrodynamics of Diffusion in Lipid Membrane Simulations. PHYSICAL REVIEW LETTERS 2018; 120:268104. [PMID: 30004782 DOI: 10.1103/physrevlett.120.268104] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 06/08/2023]
Abstract
By performing molecular dynamics simulations with up to 132 million coarse-grained particles in half-micron sized boxes, we show that hydrodynamics quantitatively explains the finite-size effects on diffusion of lipids, proteins, and carbon nanotubes in membranes. The resulting Oseen correction allows us to extract infinite-system diffusion coefficients and membrane surface viscosities from membrane simulations despite the logarithmic divergence of apparent diffusivities with increasing box width. The hydrodynamic theory of diffusion applies also to membranes with asymmetric leaflets and embedded proteins, and to a complex plasma-membrane mimetic.
Collapse
Affiliation(s)
- Martin Vögele
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, Moussatova A, DeGagné LJ, Sejdiu BI, Singh G, Wassenaar TA, Delgado Magnero K, Marrink SJ, Tieleman DP. Lipid-Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS CENTRAL SCIENCE 2018; 4:709-717. [PMID: 29974066 PMCID: PMC6028153 DOI: 10.1021/acscentsci.8b00143] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/08/2023]
Abstract
Cell membranes contain hundreds of different proteins and lipids in an asymmetric arrangement. Our current understanding of the detailed organization of cell membranes remains rather elusive, because of the challenge to study fluctuating nanoscale assemblies of lipids and proteins with the required spatiotemporal resolution. Here, we use molecular dynamics simulations to characterize the lipid environment of 10 different membrane proteins. To provide a realistic lipid environment, the proteins are embedded in a model plasma membrane, where more than 60 lipid species are represented, asymmetrically distributed between the leaflets. The simulations detail how each protein modulates its local lipid environment in a unique way, through enrichment or depletion of specific lipid components, resulting in thickness and curvature gradients. Our results provide a molecular glimpse of the complexity of lipid-protein interactions, with potentially far-reaching implications for our understanding of the overall organization of real cell membranes.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Eduardo Mendez-Villuendas
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Helgi I. Ingólfsson
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ruo-Xu Gu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Iwona Siuda
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Manuel N. Melo
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anastassiia Moussatova
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Lucien J. DeGagné
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Gurpreet Singh
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tsjerk A. Wassenaar
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Karelia Delgado Magnero
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- E-mail:
| |
Collapse
|
18
|
Abstract
From the pharmacological point of view, allosteric modulators may present numerous advantages over orthosteric ligands. Growing availability of novel tools and experimental data provides a tempting opportunity to apply computational methods to improve known modulators and design novel ones. However, recent progress in understanding of complexity of allostery increases awareness of problems involved in design of modulators with desired properties. Deeper insight into phenomena such as probe dependence, altering signaling bias with minor changes in ligand structure, as well as influence of subtle endogenous allosteric factors turns out to be fundamental. These effects make the design of a modulator with precise pharmacological outcome a very challenging task, and need to be taken into consideration throughout the design process. In this chapter, we focus on nuances of targeting GPCR allosteric sites in computational drug design efforts, in particular with application of docking, virtual screening, and molecular dynamics.
Collapse
|
19
|
Duncan AL, Reddy T, Koldsø H, Hélie J, Fowler PW, Chavent M, Sansom MSP. Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Sci Rep 2017; 7:16647. [PMID: 29192147 PMCID: PMC5709381 DOI: 10.1038/s41598-017-16865-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023] Open
Abstract
Cell membranes are crowded and complex environments. To investigate the effect of protein-lipid interactions on dynamic organization in mammalian cell membranes, we have performed coarse-grained molecular dynamics simulations containing >100 copies of an inwardly rectifying potassium (Kir) channel which forms specific interactions with the regulatory lipid phosphatidylinositol 4,5-bisphosphate (PIP2). The tendency of protein molecules to cluster has the effect of organizing the membrane into dynamic compartments. At the same time, the diversity of lipids present has a marked effect on the clustering behavior of ion channels. Sub-diffusion of proteins and lipids is observed. Protein crowding alters the sub-diffusive behavior of proteins and lipids such as PIP2 which interact tightly with Kir channels. Protein crowding also affects bilayer properties, such as membrane undulations and bending rigidity, in a PIP2-dependent manner. This interplay between the diffusion and the dynamic organization of Kir channels may have important implications for channel function.
Collapse
Affiliation(s)
- Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Tyler Reddy
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- T-6, MS K710, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- D. E. Shaw Research, 120 W 45th St., New York, NY, 10036, USA
| | - Jean Hélie
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Semmle, Blue Boar Court, 9 Alfred St, Oxford, OX1 4EH, UK
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Matthieu Chavent
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- IPBS-CNRS, Toulouse, Midi-Pyrénées, France
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
20
|
Ingólfsson HI, Carpenter TS, Bhatia H, Bremer PT, Marrink SJ, Lightstone FC. Computational Lipidomics of the Neuronal Plasma Membrane. Biophys J 2017; 113:2271-2280. [PMID: 29113676 PMCID: PMC5700369 DOI: 10.1016/j.bpj.2017.10.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Membrane lipid composition varies greatly within submembrane compartments, different organelle membranes, and also between cells of different cell stage, cell and tissue types, and organisms. Environmental factors (such as diet) also influence membrane composition. The membrane lipid composition is tightly regulated by the cell, maintaining a homeostasis that, if disrupted, can impair cell function and lead to disease. This is especially pronounced in the brain, where defects in lipid regulation are linked to various neurological diseases. The tightly regulated diversity raises questions on how complex changes in composition affect overall bilayer properties, dynamics, and lipid organization of cellular membranes. Here, we utilize recent advances in computational power and molecular dynamics force fields to develop and test a realistically complex human brain plasma membrane (PM) lipid model and extend previous work on an idealized, "average" mammalian PM. The PMs showed both striking similarities, despite significantly different lipid composition, and interesting differences. The main differences in composition (higher cholesterol concentration and increased tail unsaturation in brain PM) appear to have opposite, yet complementary, influences on many bilayer properties. Both mixtures exhibit a range of dynamic lipid lateral inhomogeneities ("domains"). The domains can be small and transient or larger and more persistent and can correlate between the leaflets depending on lipid mixture, Brain or Average, as well as on the extent of bilayer undulations.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate
| | - Harsh Bhatia
- Center for Applied Scientific Computing (CASC), Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing (CASC), Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate.
| |
Collapse
|
21
|
Computational studies of membrane proteins: from sequence to structure to simulation. Curr Opin Struct Biol 2017; 45:133-141. [DOI: 10.1016/j.sbi.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 11/19/2022]
|
22
|
Fowler PW, Williamson JJ, Sansom MSP, Olmsted PD. Roles of Interleaflet Coupling and Hydrophobic Mismatch in Lipid Membrane Phase-Separation Kinetics. J Am Chem Soc 2016; 138:11633-42. [PMID: 27574865 PMCID: PMC5025830 DOI: 10.1021/jacs.6b04880] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Characterizing
the nanoscale dynamic organization within lipid
bilayer
membranes is central
to our understanding of cell membranes at a molecular level. We investigate
phase separation and communication across leaflets in ternary lipid
bilayers, including saturated lipids with between 12 and 20 carbons
per tail. Coarse-grained molecular dynamics simulations reveal a novel
two-step kinetics due to hydrophobic mismatch, in which the initial
response of the apposed leaflets upon quenching is to increase local
asymmetry (antiregistration), followed by dominance of symmetry (registration)
as the bilayer equilibrates. Antiregistration can become thermodynamically
preferred if domain size is restricted below ∼20 nm, with implications
for the symmetry of rafts and nanoclusters in cell membranes, which
have similar reported sizes. We relate our findings to theory derived
from a semimicroscopic model in which the leaflets experience a “direct”
area-dependent coupling, and an “indirect” coupling
that arises from hydrophobic mismatch and is most important at domain
boundaries. Registered phases differ in composition from antiregistered
phases, consistent with a direct coupling between the leaflets. Increased
hydrophobic mismatch purifies the phases, suggesting that it contributes
to the molecule-level lipid immiscibility. Our results demonstrate
an interplay of competing interleaflet couplings that affect phase
compositions and kinetics, and lead to a length scale that
can influence lateral and transverse bilayer organization within cells.
Collapse
Affiliation(s)
- Philip W Fowler
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford, OX1 3QU, U.K
| | - John J Williamson
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University , 37th and O Streets, N.W., Washington, D.C. 20057, United States
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford, OX1 3QU, U.K
| | - Peter D Olmsted
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University , 37th and O Streets, N.W., Washington, D.C. 20057, United States
| |
Collapse
|