1
|
Upadhaya AH, Mirgane HA, Pandey SP, Patil VS, Bhosale SV, Singh PK. Electrostatically Engineered Tetraphenylethylene-Based Fluorescence Sensor for Protamine and Trypsin: Leveraging Aggregation-Induced Emission for Enhanced Sensitivity and Selectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19357-19369. [PMID: 39241011 DOI: 10.1021/acs.langmuir.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The accurate detection of Protamine and Trypsin, two biomolecules with significant clinical and biological relevance, presents a substantial challenge because of their structural peculiarities, low abundance in physiological fluids, and potential interference from other substances. Protamine, a cationic protein, is crucial for counteracting heparin overdoses, whereas Trypsin, a serine protease, is integral to protein digestion and enzyme activation. This study introduces a novel fluorescence sensor based on a (4-(1,2,2-tris(4-phosphonophenyl)vinyl)phenyl)phosphonic acid octasodium salt (TPPE), leveraging aggregation-induced emission (AIE) characteristics and electrostatic interactions to achieve selective and sensitive detection of these biomolecules. Through comprehensive optical characterization, including ground-state absorption, steady-state, and time-resolved emission spectroscopy, the interaction mechanisms and aggregation dynamics of TPPE with Protamine and Trypsin were elucidated. The sensor exhibits very high sensitivity (LOD: 1.45 nM for Protamine and 32 pM for Trypsin), selectivity, and stability, successfully operating in complex biological matrices, such as human serum and urine. Importantly, this sensor design underscores the synergy between the AIE phenomena and biomolecular interactions, offering a promising alternative for analytical applications in biomedical research and clinical diagnostics. The principles outlined herein open new avenues for the development of other AIE-based sensors, expanding the toolkit available for detecting a wide range of biomolecules using similar design strategies.
Collapse
Affiliation(s)
- Aditi H Upadhaya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400 056, India
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400 056, India
| | - Vrushali S Patil
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
2
|
Bais S, Singh PK. Al 3+-Responsive Ratiometric Fluorescent Sensor for Creatinine Detection: Thioflavin-T and Sulfated-β-Cyclodextrin Synergy. ACS APPLIED BIO MATERIALS 2023; 6:4146-4157. [PMID: 37702182 DOI: 10.1021/acsabm.3c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Kidney disorders are a rising global health issue, necessitating early diagnosis for effective treatment. Creatinine, a metabolic waste product from muscles, serves as an ideal biomarker for kidney damage. The existing optical methods for creatinine detection often involve labor-intensive synthesis processes and present challenges with the aqueous solubility and sensitivity to experimental variations. In this study, we introduce a straightforward fluorescence "turn-on" ratiometric sensor system for creatinine detection in aqueous media with a limit of detection of 0.5 μM. The sensor is based on sulfated-β-cyclodextrin (SCD)-templated H-aggregate of a commercially available, ultrafast rotor dye thioflavin-T (ThT). The Al3+ ion-induced dissociation of ThT-SCD aggregates, followed by reassociation upon creatinine addition, generates a detectable signal. The modulation of monomer/aggregate equilibrium due to the disassembly/reassembly of the ThT-SCD system under Al3+/creatinine influence serves as the optimal strategy for ratiometric creatinine detection in aqueous media. Our sensor framework offers several advantages: utilization of the readily available dye ThT, which eliminates the need for a laborious synthesis of custom fluorescent probes; ratiometric sensing, which improves quantitative analysis accuracy; and compatibility with complex aqueous media. The sensor's practical utility has been successfully demonstrated in artificial urine samples. In summary, our sensor system represents a significant advancement in the rapid, selective, and sensitive detection of the clinically crucial bioanalyte creatinine, offering potential benefits for the early diagnosis and management of kidney disorders.
Collapse
Affiliation(s)
- Sujata Bais
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Warerkar OD, Mudliar NH, Ahuja T, Shahane SD, Singh PK. A highly sensitive hemicyanine-based near-infrared fluorescence sensor for detecting toxic amyloid aggregates in human serum. Int J Biol Macromol 2023; 247:125621. [PMID: 37392920 DOI: 10.1016/j.ijbiomac.2023.125621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The development of an accurate and sensitive sensor for detecting amyloid plaques, which are responsible for many protein disorders like Alzheimer's disease, is crucial for early diagnosis. Recently, there has been a notable increase in the development of fluorescence probes that exhibit emission in the red region (>600 nm), aiming to effectively tackle the challenges encountered when working with complex biological matrices. In the current investigation, a hemicyanine-based probe, called LDS730, has been used for the sensing of amyloid fibrils, which belong to the Near-Infrared Fluorescence (NIRF) family of dyes. NIRF probes provide higher precision in detection, prevent photo-damage, and minimize the autofluorescence of biological specimens. The LDS730 sensor emits in the near-infrared region and shows a 110-fold increase in fluorescence turn-on emission when bound to insulin fibrils, making it a highly sensitive sensor. The sensor has an emission maximum of ~710 nm in a fibril-bound state, which shows a significant red shift along with a Stokes' shift of ~50 nm. The LDS730 sensor also displays excellent performance in the complicated human serum matrix, with a limit of detection (LOD) of 103 nM. Molecular docking calculations suggest that the most likely binding location of LDS730 in the fibrillar structure is the inner channels of amyloid fibrils along its long axis, and the sensor engages in several types of hydrophobic interactions with neighboring amino acid residues of the fibrillar structure. Overall, this new amyloid sensor has great potential for the early detection of amyloid plaques and for improving diagnostic accuracy.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Tanya Ahuja
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Sailee D Shahane
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Pandey SP, P K, Dutta T, Chakraborty B, Koner AL, Singh PK. Mitochondria-Directing Fluorogenic Probe: An Efficient Amyloid Marker for Imaging Lipid Metabolite-Induced Protein Aggregation in Live Cells and Caenorhabditis elegans. Anal Chem 2023; 95:6341-6350. [PMID: 37014217 DOI: 10.1021/acs.analchem.2c05466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The design and development of optical probes for sensing neurotoxic amyloid fibrils are active and important areas of research and are undergoing continuous advancements. In this paper, we have synthesized a red emissive styryl chromone-based fluorophore (SC1) for fluorescence-based detection of amyloid fibrils. SC1 records exceptional modulation in its photophysical properties in the presence of amyloid fibrils, which has been attributed to the extreme sensitivity of its photophysical properties toward the immediate microenvironment of the probe in the fibrillar matrix. SC1 also shows very high selectivity toward the amyloid-aggregated form of the protein as compared to its native form. The probe is also able to monitor the kinetic progression of the fibrillation process, with comparable efficiency as that of the most popular amyloid probe, Thioflavin-T. Moreover, the performance of SC1 is least sensitive to the ionic strength of the medium, which is an advantage over Thioflavin-T. In addition, the molecular level interaction forces between the probe and the fibrillar matrix have been interrogated by molecular docking calculations which suggest the binding of the probe to the exterior channel of the fibrils. The probe has also been demonstrated to sense protein aggregates from the Aβ-40 protein, which is known to be responsible for Alzheimer's disease. Moreover, SC1 exhibited excellent biocompatibility and exclusive accumulation at mitochondria which allowed us to successfully demonstrate the applicability of this probe to detect mitochondrial-aggregated protein induced by an oxidative stress indicator molecule 4-hydroxy-2-nonenal (4-HNE) in A549 cell lines as well as in a simple animal model like Caenorhabditis elegans. Overall, the styryl chromone-based probe presents a potentially exciting alternative for the sensing of neurotoxic protein aggregation species both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400056, India
| | - Kavyashree P
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Barsha Chakraborty
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Prabhat K Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
5
|
Mini-review on a polymers film detector for chloroform vapour: julolidine as fluorescent molecular rotors (JCFMRs). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Kaur J, Mirgane HA, Bhosale SV, Singh PK. A cationic AIEgen and hexametaphosphate based simple and convenient fluorometric assay for alkaline phosphatase and its inhibitor. Org Biomol Chem 2022; 20:4599-4607. [PMID: 35603784 DOI: 10.1039/d2ob00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alkaline phosphatase (ALP) is an important biomarker to diagnose a number of diseases, such as anaemia, hepatobiliary diseases, chronic nephritis, and hypothyroidism. Therefore, the development of simple and convenient assays to monitor levels of ALP is highly desirable. In the present study, an aggregation-induced emission based simple, real-time, and direct fluorescence detection platform has been developed, by using a tetracationic pyridinium derivative of tetraphenylethylene (TPy-TPE) and anionic sodium hexametaphosphate (HMP) as component units. The sensing system, based on the TPy-TPE-HMP assembly, is highly responsive to the ALP dependent disintegration of the TPy-TPE-HMP aggregation complex, owing to HMP digestion by ALP. The sensing platform has an ALP detection limit of 16 mU mL-1 and linear range of 0-742 mU mL-1, respectively. The enzyme kinetic parameters, Km and Vmax, have been evaluated. In addition, the potential applicability of the TPy-TPE-HMP sensing system has also been shown with diluted human serum samples. Moreover, the TPy-TPE-HMP probe system is also useful for screening inhibitors of ALP.
Collapse
Affiliation(s)
- Jasvir Kaur
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Harshad A Mirgane
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403 206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|
7
|
Pramanik S, Mahato P, Pramanik U, Nandy A, Khamari L, Shrivastava S, Rai S, Mukherjee S. DNA-Templated Modulation in the Photophysical Properties of a Fluorescent Molecular Rotor Auramine O by Varying the DNA Composition. J Phys Chem B 2022; 126:2658-2668. [PMID: 35357836 DOI: 10.1021/acs.jpcb.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This work delineates an integrative approach combining spectroscopic and computational studies to decipher the association-induced fluorescence properties of a fluorescent molecular rotor, viz., auramine O (AuO), after interacting with 20-mer duplex DNA having diverse well-matched base pairs. While exploring the scarcely explored sequence-dependent interaction mechanism of AuO and DNA, we observed that DNA could act as a conducive scaffold to the formation of AuO dimer through noncovalent interactions at lower molecular density. The photophysical properties of AuO depend on the nucleotide compositions as described from sequence-dependent shifting in the emission and absorption maxima. Furthermore, we explored such DNA base pair-dependent fluorescence spectral characteristics of AuO toward discriminating the thermodynamically most stable single nucleotide mismatch in a 20-mer sequence. Our results are interesting and could be useful in developing analogues with further enhanced emission properties toward mismatched DNA sequences.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Shivam Shrivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
8
|
Singh G, Singh VR, Pandey SP, Singh PK. Sulfated-β-cyclodextrin templated aggregation of a metachromatic dye, Basic Orange 21: A photophysical investigation. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2046277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gaurav Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Um-dae Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Vidya R. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Shrishti P. Pandey
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Mumbai, INDIA
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
9
|
Güner D, Şener BB, Bayraç C. Label free detection of auramine O by G-quadruplex-based fluorescent turn-on strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120532. [PMID: 34776374 DOI: 10.1016/j.saa.2021.120532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Auramine o (AO) is a synthetic dye used in paper and textile industries. Although it has been an unauthorized food additive in many countries due to its toxic and carcinogenic possibility, its illegal uses have been detected in certain food products such as pasta, semolina and spices and also in pharmaceuticals. The presence of AO in food products should be monitored, therefore, to minimize the negative health effects on consumers. In this study, a simple, highly sensitive and selective label free detection method was investigated for AO by G-quadruplex-based fluorescent turn-on strategy. The optimum fluorescent detection assay was achieved with a specific G-quadruplex DNA sequence, c-myc, at 400 nM in Tris-HCl buffer at pH 7.4. The linearity of fluorescence intensity depending on AO concentration ranged from 0 to 0.07 µM and LOD and LOQ were 3 nM and 10 nM, respectively. The G-quadruplex-based detection assay was highly specific for AO as compared to other two synthetic food colorings and successfully applied to determine AO in pasta, bulgur and curry powder with recoveries in the range from 70.33% to 106.49%. This G-quadruplex-based label free detection assay has a significant potential to be used in the detection of AO in food products.
Collapse
Affiliation(s)
- Dilan Güner
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | | | - Ceren Bayraç
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
10
|
Pandey SP, Awasthi AA, Singh PK. Supramolecular tuning of thioflavin-T aggregation hosted by polystyrene sulfonate. Phys Chem Chem Phys 2021; 23:14716-14724. [PMID: 34190258 DOI: 10.1039/d1cp02030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tunable and controllable emission is an extremely desirable feature for advanced functional materials that finds usage in optoelectronic utilization, fluorescence probing/sensing, drug-delivery monitoring, etc. In the present contribution, we have employed a macrocyclic host molecule, sulfobutyl ether-β-cyclodextrin (SBE-β-CD), as a tuning agent for an intensely emissive aggregate assembly of a molecular rotor dye, thioflavin-T (ThT), in the presence of an anionic polyelectrolyte, polystyrene sulfonate (PSS). The macrocyclic host breaks the PSS templated ThT aggregates and leads to encapsulation of released ThT molecules, tailoring the emission response of the system in terms of intensity and wavelength. Utilizing the established selectivity of the cyclodextrin-adamantane system, reverse control of this tunable emission has been further achieved. The controllable fluorescence system has been extensively investigated using ground-state absorption, steady-state and time-resolved emission spectroscopy. This kind of supramolecular tailoring of self-assembled aggregate emission has enormous potential in the field of fluorescence sensors and probes, and imaging and tracking in biological systems.
Collapse
Affiliation(s)
- Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206, India and Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. and Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| |
Collapse
|
11
|
Singh G, Pandey SP, Singh PK. Anionic Polyelectrolyte-Induced Aggregation of Basic Orange 21: A Clue toward Metachromasia. J Phys Chem B 2021; 125:7033-7043. [PMID: 34137609 DOI: 10.1021/acs.jpcb.1c02127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The change in the color of chromophore upon being embedded in a biological tissue is known as metachromasia. Basic Orange 21 (BO21) is a cationic polymethine dye that has been implied as a supravital dye, which produces metachromasia in leukocytes. An improved differential counting of leukocytes has been achieved in the clinical setup based on characteristic metachromatic expressions of BO21 for different types of leukocytes. Although BO21 has been utilized as a chromatic indicator for leukocyte counting, there are limited number of investigations that focus on the factors that may be responsible for the spectral shift in absorption and emission spectra of BO21, which leads to its metachromatic behavior. In this work, we have investigated the effect of a synthetic anionic polyelectrolyte, polystyrene sulfonate (PSS), on the photophysical properties of BO21, using steady-state emission, ground-state absorption, and time-resolved emission measurements, to get an understanding of the factors that may be responsible for the spectral shift of BO21 in the cellular environment. PSS induces aggregation of BO21 molecules with large changes in its photophysical properties; this appears to be most likely the mechanism of spectral shift for BO21 reported in the cellular environment. The employment of external stimulus reveals BO21 aggregates to be significantly responsive toward external stimuli, for example, temperature and presence of salt in the medium, which further strengthens the proposal of aggregate formation. Further, we have also employed fluorescence upconversion spectroscopy with subpicosecond time resolution to estimate the excited-state lifetime of BO21.
Collapse
Affiliation(s)
- Gaurav Singh
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India.,Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
12
|
Awasthi AA, Pandey SP, Singh PK. Supramolecular Control on the Optical Properties of a Dye-Polyelectrolyte Assembly. Chemphyschem 2021; 22:975-984. [PMID: 33759328 DOI: 10.1002/cphc.202100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Indexed: 12/16/2022]
Abstract
Control of fluorescent molecular assemblies is an exciting area of research with large potential for various important applications, such as, fluorescence sensing/probing, cell imaging and monitoring drug-delivery. In the present contribution, we have demonstrated control on the extent of aggregation of a dye-polyelectrolyte assembly using a macrocyclic host molecule, sulfobutylether-β-cyclodextrin (SBE-β-CD). Initially, a cationic molecular rotor based organic dye, Auramine-O (AuO), undergoes aggregation in the presence of an anionic polyelectrolyte, polystyrene sulfonate (PSS), and displays a broad intense new emission band along with large variation in its absorption features and excited-state lifetime. A manipulation of the monomer-aggregate equilibrium of the dye-polyelectrolyte assembly has been achieved by introducing a cyclodextrin based supramolecular host, SBE-β-CD, which leads to relocation of AuO molecules from polyelectrolyte (PSS) to supramolecular host cavity, owing to the formation of a host-guest complex between AuO and SBE-β-CD. A reversible control on this manipulation of monomer-aggregate equilibrium is further achieved by introducing a competitive guest for the host cavity i. e., 1-Adamantanol. Thus, we have demonstrated an interesting control on the dye-polyelectrolyte aggregate assembly using a supramolecular host molecule which open up exciting possibilities to construct responsive materials using a repertoire of various host-specific guest molecules.
Collapse
Affiliation(s)
- Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, 410206, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
13
|
|
14
|
Warerkar OD, Mudliar NH, Singh PK. A hemicyanine based fluorescence turn-on sensor for amyloid fibril detection in the far-red region. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Pandey SP, Jha P, Singh PK. A colorimetric and fluorometric based dual readout approach for effective heparin sensing. Int J Biol Macromol 2021; 178:536-546. [PMID: 33621577 DOI: 10.1016/j.ijbiomac.2021.02.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Devising fluorescence-based turn-on probes for the specific and sensitive detection of Heparin is of utmost clinical importance. In this contribution, we have identified a molecular rotor based asymmetric cyanine probe, thiazole orange (TO), which enables an efficient colorimetric and fluorimetric detection of Heparin. TO undergoes the formation of emissive H-aggregates upon interaction with Heparin that display an impressive emission enhancement of ~22 fold together with drastic changes in the absorption spectra that yields a prominent colour change in the solution from orange to yellow. These seldom reported emissive H-aggregates of TO, serve as an efficient platform for Heparin detection with a LOD of 19 nM, fluorometrically and 34 nM, colorimetrically. The TO-Heparin complex is also accompanied by a large change in the excited-state lifetime. The TO-Heparin complex has been further utilized for the detection of Protamine, which is the only medically affirmed antitoxin of Heparin. Overall, our sensing system offers several advantages, such as, simple, dual read-out, economic and specific detection of Heparin with longer excitation and emission wavelength, rapid naked eye detection and utilizes an in-expensive commercially available fluoprophore, TO. Most importantly, our sensing system also displays a good performance in the biologically complex human serum matrix.
Collapse
Affiliation(s)
- Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India
| | - Pamela Jha
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai 410206, India
| | - Prabhat K Singh
- Radiation& Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India.
| |
Collapse
|
16
|
Pandey SP, Jha P, Singh PK. Aggregation induced emission of an anionic tetraphenylethene derivative for efficient protamine sensing. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113625] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Uddin A, Roy B, Jose GP, Hossain SS, Hazra P. Sensing and modulation of amyloid fibrils by photo-switchable organic dots. NANOSCALE 2020; 12:16805-16818. [PMID: 32761038 DOI: 10.1039/d0nr04312e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormal aggregation of amyloidogenic proteins (like Aβ 42, amylin, α-synuclein, insulin) and the deposition of these aggregates is believed to be associated with several diseases known as amyloidosis. The pathway of aggregation involves three distinct phases: the oligomeric, elongation and plateau phases. Among them, the oligomeric phase of Aβ 42 and α-synuclein involves the generation of transient oligomeric species suspected to cause several neurological disorders, including Alzheimer's and Parkinson's diseases. Over the past few years, scientists have devoted much more effort to devising new fluorescent molecular probes to estimate the mechanisms of formation, and have gained vital information about possible therapeutic routes for amyloidosis. However, such fluorescent probes face serious limitations because of self-quenching at high concentrations of the probe; therefore, they are inappropriate for quantitative analysis and bio-imaging experiments. Hence, smart biocompatible fluorescent probes are indispensable, as they not only overcome the drawbacks of conventional fluorescent probes, but also have the potential ability to fight amyloidosis through modulation of the pathways involved. In this work, for the first time we introduce a series of promising photo-switchable aggregation-induced emission (AIE) dots (DPAPMI, CPMI) and aggregation caused quenching (ACQ) dots (DMAPMI) which can detect amyloid fibrils in terms of switching and enhancing their fluorescence emission. Interestingly, the organic dots enhance the aggregation rate of insulin by speeding up the microscopic processes, specifically secondary nucleation (with rate constant k2) and the elongation process (with rate constant k+). Moreover, the comparison of kinetics studies with ThT suggests that our organic dots can sense pre-fibrillar aggregates of insulin during the aggregation process, which may be beneficial for the early detection of amyloid fibrils. In summary, our study indicates that these organic dots can be used for the imaging and early stage detection of amyloid fibril formation and the modulation of amyloid formation pathways.
Collapse
Affiliation(s)
- Aslam Uddin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune, Maharashtra, India.
| | - Bibhisan Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune, Maharashtra, India.
| | - Gregor P Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune, Maharashtra, India
| | - Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| | - Partha Hazra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune, Maharashtra, India. and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhaba Road, Pashan, Pune, Maharashtra, India
| |
Collapse
|
18
|
Pandey SP, Singh PK. Basic Orange 21: A molecular rotor probe for fluorescence turn-on sensing of amyloid fibrils. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Chakraborty G, Ray AK, Singh PK, Pal H. Non-covalent interaction of BODIPY-benzimidazole conjugate with bovine serum albumin–A photophysical and molecular docking study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Sulatskaya AI, Sulatsky MI, Antifeeva IA, Kuznetsova IM, Turoverov KK. Structural Analogue of Thioflavin T, DMASEBT, as a Tool for Amyloid Fibrils Study. Anal Chem 2019; 91:3131-3140. [DOI: 10.1021/acs.analchem.8b05737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - M. I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Iu. A. Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia
- Peter the Great St. Petersburg Polytechnic University (SPbPU), St. Petersburg 195251, Russia
| |
Collapse
|
21
|
Aydinoglu S, Pasti A, Biver T, Mennucci B. Auramine O interaction with DNA: a combined spectroscopic and TD-DFT analysis. Phys Chem Chem Phys 2019; 21:20606-20612. [DOI: 10.1039/c9cp03071a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AuO fluorescent molecular rotor intercalation into DNA: calculations and experiments uncover binding details as absorbance/fluorescence features, energies involved and geometries.
Collapse
Affiliation(s)
- Sabriye Aydinoglu
- Department of Analytical Chemistry
- Faculty of Pharmacy – Cukurova University
- 01250 Sarıçam/Adana
- Turkey
| | - Andrea Pasti
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| | - Tarita Biver
- Department of Analytical Chemistry
- Faculty of Pharmacy – Cukurova University
- 01250 Sarıçam/Adana
- Turkey
- Department of Pharmacy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| |
Collapse
|
22
|
Fares M, Li Y, Liu Y, Miao K, Gao Z, Zhai Y, Zhang X. A Molecular Rotor-Based Halo-Tag Ligand Enables a Fluorogenic Proteome Stress Sensor to Detect Protein Misfolding in Mildly Stressed Proteome. Bioconjug Chem 2018; 29:215-224. [DOI: 10.1021/acs.bioconjchem.7b00763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Matthew Fares
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Yinghao Li
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Yu Liu
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Kun Miao
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Zi Gao
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Yufeng Zhai
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| | - Xin Zhang
- Department of Chemistry, ‡Department of Biochemistry and Molecular Biology, and §The Huck Institutes
of Life Sciences, The Pennsylvania State University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
23
|
|
24
|
Awasthi AA, Singh PK. Stimulus-Responsive Supramolecular Aggregate Assembly of Auramine O Templated by Sulfated Cyclodextrin. J Phys Chem B 2017; 121:6208-6219. [DOI: 10.1021/acs.jpcb.7b03592] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankur A. Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prabhat K. Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
25
|
Mudliar NH, Pettiwala AM, Awasthi AA, Singh PK. On the Molecular Form of Amyloid Marker, Auramine O, in Human Insulin Fibrils. J Phys Chem B 2016; 120:12474-12485. [PMID: 27973839 DOI: 10.1021/acs.jpcb.6b10078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Designing extrinsic fluorescence sensors for amyloid fibrils is a very active and important area of research. Recently, an ultrafast molecule rotor dye, Auramine O (AuO), has been projected as a fluorescent amyloid marker. It has been claimed that AuO scores better than the most extensively utilized gold-standard amyloid probe, Thioflavin-T (ThT). This advantage arises from the fact that AuO, in addition to its usual emission band (∼500 nm), also displays a large red-shifted emission band (∼560 nm), exclusively in the presence of human insulin fibril medium and not in the native protein or buffer media. On the contrary, for ThT, the emission maximum (∼490 nm) largely remains unchanged while going from protein to fibril. This otherwise unknown large red-shifted emission band of AuO, observed in the presence of human insulin fibrils, was tentatively attributed to a species formed upon fast proton dissociation from excited AuO. It was proposed that because of the long excited-state lifetime (∼1.8 ns) of AuO upon association with human insulin fibrils, this fast proton dissociation from excited AuO could be observed, which is otherwise not observed in buffer or native protein media, owing to its very short excited-state lifetime (∼1 ps). Herein, we show that despite the long excited-state lifetime of AuO in other fibrillar media (human serum albumin and lysozyme), the new red-shifted emission band at 560 nm is not observed, thus possibly suggesting a different origin of the red-shifted emission band of AuO in human insulin fibril medium. We convincingly show that this red-shifted band of AuO (∼560 nm) could be observed under conditions that promote dye aggregation, such as a premicellar concentration of surfactants and polyelectrolytes. These AuO aggregates display strong emission wavelength dependence of transient decay traces, similar to that for AuO in human insulin fibril medium. Detailed time-resolved emission spectral (TRES) measurements suggest that the AuO/premicellar surfactant and AuO/human insulin fibril system share similar features, such as a dynamic red-shift in TRES and an isoemissive point in the time-resolved area-normalized emission spectra, suggesting that the characteristic red-shifted emission band of AuO in human insulin fibril medium may arise from AuO aggregates.
Collapse
Affiliation(s)
- Niyati H Mudliar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Aafrin M Pettiwala
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Ankur A Awasthi
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre , Mumbai 400 085, India
| |
Collapse
|