1
|
Wróbel P, Kubisiak P, Eilmes A. Hydrogen Bonding and Infrared Spectra of Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide/Water Mixtures: A View from Molecular Dynamics Simulations. J Phys Chem B 2022; 126:10922-10932. [PMID: 36516319 PMCID: PMC9806834 DOI: 10.1021/acs.jpcb.2c06947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Simulations of ab initio molecular dynamics have been performed for mixtures of ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) ionic liquid and water. Statistics of donors and acceptors of hydrogen bonds has revealed that with increasing water content, hydrogen bonds between EMIM cations and TFSI anions are replaced by bonds to water molecules. In the mixture of liquids, the total number of bonds (from EMIM cations or water molecules) formed by TFSI acceptors increases. IR spectra obtained from ab initio molecular dynamics trajectories are in good agreement with literature data for ionic liquid/water systems. Analysis of oscillations of individual C-H and O-H bonds has shown correlations between vibrational frequencies and hydrogen bonds formed by an EMIM cation or water molecule and has indicated that the changes in the IR spectrum result from the decreased number of water-water hydrogen bonds in the mixture. The tests of DFTB methodology with tailored parameterizations have yielded reasonably good description of the IR spectrum of bulk water, whereas available parameterizations have failed in satisfactory reproduction of the IR spectrum of EMIM-TFSI/water mixtures in the region above 3000 cm-1.
Collapse
|
2
|
Ishisone K, Ori G, Boero M. Structural, dynamical, and electronic properties of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Phys Chem Chem Phys 2022; 24:9597-9607. [PMID: 35403652 DOI: 10.1039/d2cp00741j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a microscopic insight, both structural and electronic, into the multifold interactions occurring in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][TFSI] currently targeted for applications in next-generation low-power electronics and optoelectronic devices. To date, practical applications have remained hampered by the lack of fundamental understanding of the interactions occurring both inside the IL and at the interface with the substrate. Our first principles dynamical simulations provide accurate insights into the nature of bonding and non-bonding interactions, dynamical conformational changes and induced dipole moments, along with their statistical distributions, of this ionic liquid, that have so far not been completely unraveled. The mobilities of the two ionic species are obtained by long-lasting dynamical simulations at finite temperature, allowing simultaneous monitoring and quantification of the isomerization occurring in the IL. Moreover, a thorough analysis of the electronic structure and partial charge distributions characterizing the two components, the cation and anion, allow rationalization of the nature of the electrostatic interactions, hydrogen bonding properties of the two ionic counterparts, and the infra-red and dielectric response of the system, especially in the low frequency range, for the full characterization of the IL.
Collapse
Affiliation(s)
- Kana Ishisone
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504, 23 rue du Loess, F-67034, France.
| | - Guido Ori
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504, 23 rue du Loess, F-67034, France.
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504, 23 rue du Loess, F-67034, France.
| |
Collapse
|
3
|
Huang T, Xu Z, Yan P, Liu X, Fan H, Zhang ZC. Direct Partial Oxidation of Methane Catalyzed by an In Situ Generated Active Au(III) Complex at Low Temperature in Ionic Liquids. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingyu Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhanwei Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Peifang Yan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Xiumei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| | - Z. Conrad Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
4
|
McDaniel JG, Yethiraj A. Understanding the Properties of Ionic Liquids: Electrostatics, Structure Factors, and Their Sum Rules. J Phys Chem B 2019; 123:3499-3512. [DOI: 10.1021/acs.jpcb.9b00963] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jesse G. McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Brela MZ, Kubisiak P, Eilmes A. Understanding the Structure of the Hydrogen Bond Network and Its Influence on Vibrational Spectra in a Prototypical Aprotic Ionic Liquid. J Phys Chem B 2018; 122:9527-9537. [PMID: 30239203 DOI: 10.1021/acs.jpcb.8b05839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of the hydrogen bond network in aprotic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) has been performed based on structures obtained from ab initio or classical molecular dynamics simulations. Statistics of different donor and acceptor atoms and the amount of chelating or bifurcated bonds has been presented. Most of the hydrogen bonds in EMIM-TFSI are formed with oxygen atoms as hydrogen acceptors; and the most probable bifurcated bonds are those with a mixed pair of oxygen and nitrogen acceptors. Spectral graph analysis has shown that the cations may form hydrogen bonds with up to five different anions and the connectivity of the whole hydrogen bond network is supported mainly by H-O bonds. In the structures of the liquid simulated via force field-based dynamics, the number of hydrogen bonds is smaller and fluorine atoms are the most favored hydrogen acceptors. One-dimensional potential energy profiles for hydrogen atom displacements and corresponding vibrational frequencies have been calculated for selected C-H bonds. Individual C-H stretching frequencies vary by 200-300 cm-1, indicating differences in local environment of hydrogen atoms forming C-H···O hydrogen bonds.
Collapse
Affiliation(s)
- Mateusz Z Brela
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Piotr Kubisiak
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| | - Andrzej Eilmes
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland
| |
Collapse
|
6
|
Deconvolution of conformational equilibria in methimazolium-based ionic liquid ion pair: Infrared spectroscopic and computational study. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Saielli G. Computational Spectroscopy of Ionic Liquids for Bulk Structure Elucidation. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology; Unit of Padova; Via Marzolo 1-35131 Padova Italy
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| |
Collapse
|
8
|
McDaniel JG, Son CY, Yethiraj A. Ab Initio Force Fields for Organic Anions: Properties of [BMIM][TFSI], [BMIM][FSI], and [BMIM][OTf] Ionic Liquids. J Phys Chem B 2018. [PMID: 29536738 DOI: 10.1021/acs.jpcb.8b01221] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Room-temperature ionic liquids (ILs) composed of organic anions bis(trifluoromethanesulfonyl)imide (TFSI), bis(fluorosulfonyl)imide (FSI), and trifluoromethanesulfonate (OTf) exhibit interesting physical properties and are important for many electrochemical applications. TFSI and FSI form "hydrophobic" ILs, immiscible with water but miscible with many organic solvents and polymers; for computer simulation studies, it is thus essential to develop force fields for these anions that are transferable among this wide variety of chemical environments. In this work, we develop entirely ab initio force fields for the TFSI, FSI, and OTf anions and predict the properties of corresponding 1-butyl-3-methylimidazolium ILs. We discuss important subtleties in the force field development related to accurately modeling conformational flexibility, that is, relaxed torsional profiles and intramolecular electrostatic interactions. The TFSI anions have notable conformational flexibility in the IL, and we predict approximately 70% cisoid and 20% transoid conformations, which is largely driven by cation/anion ion-pair interactions and is opposite to the trend expected from the anion ab initio potential energy surface. The favorable interactions between the cation and cisoid TFSI conformations result in a shoulder in the cation/anion radial distribution function at short distances, whereas interconversion between cisoid and transoid conformations occurs on a commensurate time scale as ion diffusion processes. In addition to this physical insight on anion effects, we expect that these force fields will have important applications for studying a variety of complex electrolyte systems.
Collapse
Affiliation(s)
- Jesse G McDaniel
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Chang Yun Son
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Arun Yethiraj
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
9
|
Kubisiak P, Eilmes A. Molecular Dynamics Simulations of Ionic Liquid Based Electrolytes for Na-Ion Batteries: Effects of Force Field. J Phys Chem B 2017; 121:9957-9968. [DOI: 10.1021/acs.jpcb.7b08258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Piotr Kubisiak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Eilmes
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|