1
|
Husen P, Solov'yov IA. Modeling the Energy Landscape of Side Reactions in the Cytochrome bc 1 Complex. Front Chem 2021; 9:643796. [PMID: 34095083 PMCID: PMC8170094 DOI: 10.3389/fchem.2021.643796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Much of the metabolic molecular machinery responsible for energy transduction processes in living organisms revolves around a series of electron and proton transfer processes. The highly redox active enzymes can, however, also pose a risk of unwanted side reactions leading to reactive oxygen species, which are harmful to cells and are a factor in aging and age-related diseases. Using extensive quantum and classical computational modeling, we here show evidence of a particular superoxide production mechanism through stray reactions between molecular oxygen and a semiquinone reaction intermediate bound in the mitochondrial complex III of the electron transport chain, also known as the cytochrome b c 1 complex. Free energy calculations indicate a favorable electron transfer from semiquinone occurring at low rates under normal circumstances. Furthermore, simulations of the product state reveal that superoxide formed at the Q o -site exclusively leaves the b c 1 complex at the positive side of the membrane and escapes into the intermembrane space of mitochondria, providing a critical clue in further studies of the harmful effects of mitochondrial superoxide production.
Collapse
Affiliation(s)
- Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Jacobsen L, Husen P, Solov'yov IA. Inhibition Mechanism of Antimalarial Drugs Targeting the Cytochrome bc 1 Complex. J Chem Inf Model 2021; 61:1334-1345. [PMID: 33617262 DOI: 10.1021/acs.jcim.0c01148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum (P. falciparum) is the main parasite known to cause malaria in humans. The antimalarial drug atovaquone is known to inhibit the Qo-site of the cytochrome bc1 complex of P. falciparum, which ultimately blocks ATP synthesis, leading to cell death. Through the years, mutations of the P. falciparum cytochrome bc1 complex, causing resistance to atovaquone, have emerged. The present investigation applies molecular dynamics (MD) simulations to study how the specific mutations Y279S and L282V, known to cause atovaquone resistance in malarial parasites, affect the inhibition mechanism of two known inhibitors. Binding free energy estimates were obtained through free energy perturbation calculations but were unable to confidently resolve the effects of mutations due to the great complexity of the binding environment. Meanwhile, basic mechanistic considerations from the MD simulations provide a detailed characterization of inhibitor binding modes and indicate that the Y279S mutation weakens the natural binding of the inhibitors, while no conclusive effect of the L282V mutation could be observed.
Collapse
Affiliation(s)
- Luise Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Friis I, Verkhovtsev A, Solov'yov IA, Solov'yov AV. Modeling the effect of ion-induced shock waves and DNA breakage with the reactive CHARMM force field. J Comput Chem 2020; 41:2429-2439. [PMID: 32851682 DOI: 10.1002/jcc.26399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 11/06/2022]
Abstract
Ion-induced DNA damage is an important effect underlying ion beam cancer therapy. This article introduces the methodology of modeling DNA damage induced by a shock wave caused by a projectile ion. Specifically it is demonstrated how single- and double strand breaks in a DNA molecule could be described by the reactive CHARMM (rCHARMM) force field implemented in the program MBN Explorer. The entire workflow of performing the shock wave simulations, including obtaining the crucial simulation parameters, is described in seven steps. Two exemplary analyses are provided for a case study simulation serving to: (a) quantify the shock wave propagation and (b) describe the dynamics of formation of DNA breaks. The article concludes by discussing the computational cost of the simulations and revealing the possible maximal computational time for different simulation set-ups.
Collapse
Affiliation(s)
- Ida Friis
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
4
|
Mourokh L, Vittadello M. Physical model of proton-pumping Q-cycle in respiratory and photosynthetic electron transport chains. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Korol V, Husen P, Sjulstok E, Nielsen C, Friis I, Frederiksen A, Salo AB, Solov’yov IA. Introducing VIKING: A Novel Online Platform for Multiscale Modeling. ACS OMEGA 2020; 5:1254-1260. [PMID: 31984283 PMCID: PMC6977254 DOI: 10.1021/acsomega.9b03802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/29/2019] [Indexed: 05/17/2023]
Abstract
Various biochemical and biophysical processes, occurring on multiple time and length scales, can nowadays be studied using specialized software packages on supercomputer clusters. The complexity of such simulations often requires application of different methods in a single study and strong computational expertise. We have developed VIKING, a convenient web platform for carrying out multiscale computations on supercomputers. VIKING allows combining methods in standardized workflows, making complex simulations accessible to a broader biochemical and biophysical society.
Collapse
Affiliation(s)
- Vasili Korol
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Peter Husen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Emil Sjulstok
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
- Neuroscience, University of Texas Southwestern Medical Center at
Dallas, Dallas 75390, Texas, United States
| | - Claus Nielsen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Ida Friis
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Anders Frederiksen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Adrian B. Salo
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
| | - Ilia A. Solov’yov
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense 5230, Denmark
- Department
of Physics, Carl von Ossietzky Universität
Oldenburg, Oldenburg 26111, Germany
- E-mail:
| |
Collapse
|
6
|
Nielsen C, Hui R, Lui WY, Solov’yov IA. Towards predicting intracellular radiofrequency radiation effects. PLoS One 2019; 14:e0213286. [PMID: 30870450 PMCID: PMC6417702 DOI: 10.1371/journal.pone.0213286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022] Open
Abstract
Recent experiments have reported an effect of weak radiofrequency magnetic fields in the MHz-range on the concentrations of reactive oxygen species (ROS) in living cells. Since the energy that could possibly be deposited by the radiation is orders of magnitude smaller than the energy of molecular thermal motion, it was suggested that the effect was caused by the interaction of RF magnetic fields with transient radical pairs within the cells, affecting the ROS formation rates through the radical pair mechanism. It is, however, at present not entirely clear how to predict RF magnetic field effects at certain field frequency and intensity in nanoscale biomolecular systems. We suggest a possible recipe for interpreting the radiofrequency effects in cells by presenting a general workflow for calculation of the reactive perturbations inside a cell as a function of RF magnetic field strength and frequency. To justify the workflow, we discuss the effects of radiofrequency magnetic fields on generic spin systems to particularly illustrate how the reactive radicals could be affected by specific parameters of the experiment. We finally argue that the suggested workflow can be used to predict effects of radiofrequency magnetic fields on radical pairs in biological cells, which is specially important for wireless recharging technologies where one has to know of any harmful effects that exposure to such radiation might cause.
Collapse
Affiliation(s)
- Claus Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ron Hui
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ilia A. Solov’yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
7
|
Kimø SM, Friis I, Solov'yov IA. Atomistic Insights into Cryptochrome Interprotein Interactions. Biophys J 2018; 115:616-628. [PMID: 30078611 DOI: 10.1016/j.bpj.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
It is striking that the mechanism by which birds sense geomagnetic fields during the biannual migration seasons is not entirely understood. A protein believed to be responsible for avian magnetoreception is the flavoprotein cryptochrome (CRY), which fulfills many of the criteria for a magnetic field sensor. Some experiments, however, indicate that magnetoreception in birds may be disturbed by extremely weak radio frequency fields, an effect that likely cannot be described by an isolated CRY protein. An explanation can possibly be delivered if CRY binds to another protein inside a cell that would possess certain biochemical properties, and it is, therefore, important to identify possible intracellular CRY interaction partners. The goal of this study is to investigate a possible interaction between CRY4 and the iron-sulfur-containing assembly protein (ISCA1) from Erithacus rubecula (European robin), which has recently been proposed to be relevant for magnetic field sensing. The interaction between the proteins is established through classical molecular dynamics simulations for several possible protein-docking modes. The analysis of these simulations concludes that the ISCA1 complex and CRY4 are capable of binding; however, the peculiarities of this binding argue strongly against ISCA1 as relevant for magnetoreception.
Collapse
Affiliation(s)
- Sarafina M Kimø
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ida Friis
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
8
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
9
|
Crofts AR, Rose SW, Burton RL, Desai AV, Kenis PJA, Dikanov SA. The Q-Cycle Mechanism of the bc1 Complex: A Biologist’s Perspective on Atomistic Studies. J Phys Chem B 2017; 121:3701-3717. [DOI: 10.1021/acs.jpcb.6b10524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Antony R. Crofts
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Stuart W. Rose
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, 179 Loomis, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Rodney L. Burton
- Department
of Biochemistry, University of Illinois at Urbana−Champaign, 419 Roger Adams Lab, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Amit V. Desai
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul J. A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sergei A. Dikanov
- Department
of Veterinary Clinical Medicine, University of Illinois at Urbana−Champaign, 1008 West Hazelwood Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Javanainen M, Vattulainen I, Monticelli L. On Atomistic Models for Molecular Oxygen. J Phys Chem B 2017; 121:518-528. [PMID: 28004930 DOI: 10.1021/acs.jpcb.6b11183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular oxygen (O2) is key to all life on earth, as it is constantly cycled via photosynthesis and cellular respiration. Substantial scientific effort has been devoted to understanding every part of this cycle. Classical molecular dynamics (MD) simulations have been used to study some of the key processes involved in cellular respiration: O2 permeation through alveolar monolayers and cellular membranes, its binding to hemoglobin during transport in the bloodstream, as well as its transport along optimal pathways toward its reduction sites in proteins. Moreover, MD simulations can help interpret the results of several imaging techniques in which O2 is used because of its paramagnetic nature. However, despite the widespread use of computational models for the O2 molecule, their performances have never been systematically evaluated. In this paper, we assess the performances of 14 different models of O2 available in the literature by calculating four thermodynamic properties: density, heat of vaporization, free energy of hydration, and free energy of solvation in hexadecane. For each property, reliable experimental data are available. Most models perform reasonably well in predicting the correct trends, but they fail to reproduce the experimental data quantitatively. We then develop new models for O2, with and without a quadrupole moment, and compare their behavior with the behavior of previously published models. The new models show significant improvement in terms of density, heat of vaporization, and free energy of hydration. However, quantitative agreement with water-oil partitioning is not reached due to discrepancies between the calculated and measured free energies of solvation in hexadecane. We suggest that classical pairwise-additive models may be inadequate to properly describe the thermodynamics of solvation of apolar species, such as O2, in apolar solvents.
Collapse
Affiliation(s)
- Matti Javanainen
- Department of Physics, Tampere University of Technology , 33720 Tampere, Finland.,Department of Physics, University of Helsinki , 00100 Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , 33720 Tampere, Finland.,Department of Physics, University of Helsinki , 00100 Helsinki, Finland.,MEMPHYS - Centre for Biomembrane Physics, University of Southern Denmark , 5230 Odense, Denmark
| | - Luca Monticelli
- University of Lyon, CNRS, UMR 5086 MMSB , 69367 Lyon, France
| |
Collapse
|
11
|
Salo AB, Husen P, Solov’yov IA. Charge Transfer at the Qo-Site of the Cytochrome bc1 Complex Leads to Superoxide Production. J Phys Chem B 2016; 121:1771-1782. [DOI: 10.1021/acs.jpcb.6b10403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adrian Bøgh Salo
- Department of Physics,
Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Peter Husen
- Department of Physics,
Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ilia A. Solov’yov
- Department of Physics,
Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|