1
|
Chiavarino B, Rotari L, Crestoni ME, Corinti D, Fornarini S, Scuderi D, Salpin JY. Binding Motifs of Carboplatin and Oxaliplatin with Guanine: A Combined MS/MS, IRMPD, and Theoretical Study. Inorg Chem 2023; 62:14546-14558. [PMID: 37647164 DOI: 10.1021/acs.inorgchem.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Complexes generated in the gas phase involving the purine nucleobase guanine bound to second and third generation platinum drugs, namely, carboplatin (CarboPt) and oxaliplatin (OxaliPt), were investigated by combining tandem mass spectrometry, collision-induced dissociation (CID), infrared multiple photon dissociation spectroscopy (IRMPD), and density functional theory (DFT) calculations. As the first step, a spectroscopic characterization of the protonated platinum drugs was accomplished. Protonation of both CarboPt and OxaliPt in the gas phase occurs on one of the two carbonyl groups of the cyclobutanedicarboxylate and oxalate ligand, respectively. Such protonation has been postulated by several theoretical studies as a key preliminary step in the hydrolysis of Pt drugs under acidic conditions. Subsequently, the protonated drugs react with guanine in solution to generate a complex of general formula [Pt drug + H + guanine]+, which was then mass-selected. CID experiments provided evidence of the presence of strong binding between guanine and platinum-based drugs within the complexes. The structures of the two complexes have also been examined by comparing the experimental IRMPD spectra recorded in two spectral regions with DFT-computed IR spectra. For each system, the IRMPD spectra agree with the vibrational spectra calculated for the global minimum structures, which present a monodentate complexation of Pt at the N7 position of canonical guanine. This binding scheme is therefore akin to that observed for cisplatin, while other coordination sites yield substantially less stable species. Interestingly, in the case of oxaliplatin, the IRMPD spectra are consistent with the presence of two isomeric forms very close in energy.
Collapse
Affiliation(s)
- Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, Roma I-00185, Italy
| | - Lucretia Rotari
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, Roma I-00185, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, Roma I-00185, Italy
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, Roma I-00185, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, Roma I-00185, Italy
| | - Debora Scuderi
- CNRS, Institut de Chimie Physique, Université Paris-Saclay, Orsay 91405, France
| | - Jean-Yves Salpin
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, Evry-Courcouronnes 91025, France
| |
Collapse
|
2
|
Barzaga R, Lestón-Sánchez L, Aguilar-Galindo F, Estévez-Hernández O, Díaz-Tendero S. Synergy Effects in Heavy Metal Ion Chelation with Aryl- and Aroyl-Substituted Thiourea Derivatives. Inorg Chem 2021; 60:11984-12000. [PMID: 34308640 DOI: 10.1021/acs.inorgchem.1c01068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and removal of metal ion contaminants have attracted great interest due to the health risks that they represent for humans and wildlife. Among the proposed compounds developed for these purposes, thiourea derivatives have been shown as quite efficient chelating agents of metal cations and have been proposed for heavy metal ion removal and for components of high-selectivity sensors. Understanding the nature of metal-ionophore activity for these compounds is thus of high relevance. We present a theoretical study on the interaction between substituted thioureas and metal cations, namely, Cd2+, Hg2+, and Pb2+. Two substituent groups have been chosen: 2-furoyl and m-trifluoromethylphenyl. Combining density functional theory simulations with wave function analysis techniques, we study the nature of the metal-thiourea interaction and characterize the bonding properties. Here, it is shown how the N,N'-disubstituted derivative has a strong affinity for Hg2+, through cation-hydrogen interactions, due to its greater oxidizing capacity.
Collapse
Affiliation(s)
- Ransel Barzaga
- Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, 10400 La Habana, Cuba.,Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lucia Lestón-Sánchez
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Aguilar-Galindo
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián, E-20018, Spain
| | | | - Sergio Díaz-Tendero
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Cheng R, Martens J, Fridgen TD. A vibrational spectroscopic and computational study of gaseous protonated and alkali metal cationized G-C base pairs. Phys Chem Chem Phys 2020; 22:11546-11557. [PMID: 32395733 DOI: 10.1039/d0cp00069h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structures and properties of metal cationized complexes of 9-ethylguanine (9eG) and 1-methylcytosine (1mC), (9eG:1mC)M+, where M+ = Li+, Na+, K+, Rb+, Cs+ as well as the protonated complex, (9eG:1mC)H+, have been studied using a combination of IRMPD spectroscopy and computational methods. For (9eG:1mC)H+, the dominant structure is a Hoogsteen type complex with the proton covalently bound to N3 of 1mC despite this being the third best protonation site of the two bases; based on proton affinities N7 of 9eG should be protonated. However, this structural oddity can be explained considering both the number of hydrogen bonds that can be formed when N3 of 1mC is protonated as well as the strong ion-induced dipole interaction that exists between an N3 protonated 1mC and 9eG due to the higher polarizability of 9eG. The anomalous dissociation of (9eG:1mC)H+, forming much more (1mC)H+ than would be predicted based on the computed thermochemistry, can be explained as being due to the structural oddity of the protonation site and that the barrier to proton transfer from N3 of 1mC to N7 of 9eG grows dramatically as the base pair begins to dissociate. For the (9eG:1mC)M+; M = Li+, Na+, K+, Rb+, Cs+ complexes, single unique structures could not be assigned. However, the experimental spectra were consistent with the computed spectra. For (9eG:1mC)Li+, the lowest energy structure is one in which Li+ is bound to O6 of 9eG and both O2 and N3 of 1mC; there is also an interbase hydrogen bond from the amine of 1mC to N7 of 9eG. For Na+, K+, and Rb+, similar binding of the metal cation to 1mC is calculated but, unlike Li+, the lowest energy structure is one in which the metal cation is bound to N7 of 9eG; there is also an interbase hydrogen bond between the amine of 1mC and the carbonyl of 9eG. The lowest energy structure for the Cs complex is the Watson-Crick type base pairing with Cs+ binding only to 9eG through O6 and N7 and with three hydrogen bonds between 9eG and 1mC. It also interesting to note that the Watson-Crick base pairing structure gets lower in Gibbs energy relative to the lowest energy complexes as the metal gets larger. This indicates that the smaller, more densely charged cations have a greater propensity to interfere with Watson-Crick base pairing than do the larger, less densely charged metal cations.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada.
| | | | | |
Collapse
|
4
|
Frańska M, Michalak A, Ławniczak Ł. Gas-phase hydration of Mg 2+ complexes with deprotonated uracil, thymine, uridine, and thymidine. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4504. [PMID: 31970857 DOI: 10.1002/jms.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The gas-phase hydration of Mg2+ complexes with deprotonated uracil (U), thymine (T), uridine (Ur , uracil riboside), and thymidine (Tdr , thymine deoxyriboside) was studied. The aim of the work was to analyze the hydration of product ions (eg, [2U-H+Mg]+ ) formed as a result of the collision induced dissociation of the respective parent ion (eg, [3Ur -H+Mg]+ ). The efficiency of gas-phase hydration of the ions [2U-H+Mg]+ and [2T-H+Mg]+ was similar. However, the efficiency of gas-phase hydration of the ion [U+Ur -H+Mg]+ was much higher than that of gas-phase hydration of the ion [T+Tdr -H+Mg]+ . On the basis of the mass spectra obtained and the performed molecular modelling, it was concluded that in the ion [T+Tdr -H+Mg]+ , we deal with a steric hindrance due to the presence of a sugar moiety, which affects water attachment. In the ion [U+Ur -H+Mg]+ , the position of the sugar moiety does not affect water attachment.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Anna Michalak
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
5
|
Cheng R, Loire E, Martens J, Fridgen TD. An IRMPD spectroscopic and computational study of protonated guanine-containing mismatched base pairs in the gas phase. Phys Chem Chem Phys 2020; 22:2999-3007. [DOI: 10.1039/c9cp06393e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infrared multiple photon dissociation spectroscopy has been used to probe the structures of the three protonated base-pair mismatches containing 9-ethylguanine (9eG) in the gas phase. Some of these protonated base-pairs have been identified in RNA.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | - Estelle Loire
- Laboratoire Chimie Physique – CLIO
- Campus Universite d’Orsay
- France
| | - Jonathan Martens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- Nijmegen
- The Netherlands
| | | |
Collapse
|
6
|
Ávila Y, Osiry H, Plasencia Y, Torres AE, González M, Lemus-Santana AA, Reguera E. From 3D to 2D Transition Metal Nitroprussides by Selective Rupture of Axial Bonds. Chemistry 2019; 25:11327-11336. [PMID: 31242335 DOI: 10.1002/chem.201902168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/09/2022]
Abstract
1-methyl-2-pyrrolidone (1m2p) is a solvent with proven abilities for 2D-solid exfoliation due to its extremely high surface tension. In principle, such a feature could be used also to induce the selective breaking of certain bonds in solids to obtain new materials. Such a hypothesis is demonstrated in this study for transition metal nitroprussides, where 2D solids are obtained from 3D frameworks by selective rupture of axial bonds. This contribution discusses the mechanism involved in such molecular manufacture. The crystal structure for the formed 2D solids was solved and refined from XRD powder patterns recorded using synchrotron radiation. Mössbauer, IR and Raman spectra provided fine details on the electronic structure of the resulting new series of layered materials. The experimental information was complemented with calculations for the molecule configuration in its non-activated and activated forms. In the obtained 2D solids, neighboring layers of about 1 nm of thickness remain separated by activated 1m2p molecules. The interaction between neighboring layers is of a physical nature, without the presence of a chemical bond between them, as corresponds to a 2D material.
Collapse
Affiliation(s)
- Yosuan Ávila
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México D. F., México
| | - Hernández Osiry
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México D. F., México
| | - Yosdel Plasencia
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México D. F., México
| | - Ana E Torres
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México D. F., México
| | - Marlene González
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, CONACyT, Instituto Politécnico Nacional, México D. F., México
| | - Ana A Lemus-Santana
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México D. F., México
| | - Edilso Reguera
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México D. F., México
| |
Collapse
|
7
|
Jašíková L, Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chemistry 2018; 24:3374-3390. [PMID: 29314303 DOI: 10.1002/chem.201705692] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/07/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules.
Collapse
Affiliation(s)
- Lucie Jašíková
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
8
|
Wu RR, Hamlow LA, He CC, Nei YW, Berden G, Oomens J, Rodgers MT. The intrinsic basicity of the phosphate backbone exceeds that of uracil and thymine residues: protonation of the phosphate moiety is preferred over the nucleobase for pdThd and pUrd. Phys Chem Chem Phys 2018; 19:30351-30361. [PMID: 29099122 DOI: 10.1039/c7cp05521h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gas-phase conformations of the protonated forms of thymidine-5'-monophosphate and uridine-5'-monophosphate, [pdThd+H]+ and [pUrd+H]+, are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and electronic structure calculations. The IRMPD action spectra of [pdThd+H]+ and [pUrd+H]+ are measured over the IR fingerprint and hydrogen-stretching regions using the FELIX free electron laser and an OPO/OPA laser system. Low-energy conformations of [pdThd+H]+ and [pUrd+H]+ and their relative stabilities are computed at the MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers indicate that the dominant conformers of [pdThd+H]+ and [pUrd+H]+ populated in the experiments are protonated at the phosphate oxo oxygen atom, with a syn nucleobase orientation that is stabilized by strong P[double bond, length as m-dash]OH+O2 and P-OHO4' hydrogen-bonding interactions, and C2'-endo sugar puckering. Minor abundance of conformers protonated at the O2 carbonyl of the nucleobase residue may also contribute for [pdThd+H]+, but do not appear to be important for [pUrd+H]+. Comparisons to previous IRMPD spectroscopy investigations of the protonated forms of thymidine and uridine, [dThd+H]+ and [Urd+H]+, and the deprotonated forms of pdThd and pUrd, [pdThd-H]- and [pUrd-H]-, provide insight into the effects of the phosphate moiety and protonation on the conformational features of the nucleobase and sugar moieties. Most interestingly, the thymine and uracil nucleobases remain in their canonical forms for [pdThd+H]+ and [pUrd+H]+, unlike [dThd+H]+ and [Urd+H]+, where protonation occurs on the nucleobases and induces tautomerization of the thymine and uracil residues.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Cheng R, Rose VE, Power B, Fridgen TD. Self-assembled uracil complexes containing tautomeric uracils: an IRMPD spectroscopic and computation study of the structures of gaseous uracilnCa2+ (n = 4, 5, or 6) complexes. Phys Chem Chem Phys 2018; 20:572-580. [DOI: 10.1039/c7cp07128k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structures of doubly-charged uracil (U) complexes with Ca2+, UnCa2+ (n = 4, 5, 6), were studied by infrared multiphoton dissociation (IRMPD) spectroscopy and computational methods.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | | | - Barry Power
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | | |
Collapse
|
10
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Studies of Sodium Cationized Thymidine and 5-Methyluridine: Kinetic Trapping During the ESI Desolvation Process Preserves the Solution Structure of [Thd+Na]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2423-2437. [PMID: 28836109 DOI: 10.1007/s13361-017-1753-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 05/25/2023]
Abstract
Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na]+ and [Thd+Na]+ produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses are performed at the B3LYP/6-311+G(d,p) level of theory, whereas energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory. As protonation preferentially stabilizes minor tautomers of dThd and Thd, tautomerization facilitated by Na+ binding is also considered. Comparisons of the measured IRMPD and computed IR spectra find that [dThd+Na]+ prefers tridentate (O2,O4',O5') coordination to the canonical 2,4-diketo form of dThd with thymine in a syn orientation. In contrast, [Thd+Na]+ prefers bidentate (O2,O2') coordination to the canonical 2,4-diketo tautomer of Thd with thymine in an anti orientation. Although 2,4-dihydroxy tautomers and O2 protonated thymine nucleosides coexist in the gas phase, no evidence for minor tautomers is observed for the sodium cationized species. Consistent with experimental observations, the computational results confirm that the sodium cationized thymine nucleosides exhibit a strong preference for the canonical form of the thymine nucleobase. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized dThd and Thd follow the order [dThd+H]+ < [Thd+H]+ < [dThd+Na]+ < [Thd+Na]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M U Munshi
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
11
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. Effects of sodium cationization versus protonation on the conformations and N-glycosidic bond stabilities of sodium cationized Urd and dUrd: solution conformation of [Urd+Na] + is preserved upon ESI. Phys Chem Chem Phys 2017; 19:17637-17652. [PMID: 28665436 DOI: 10.1039/c7cp02377d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uridine (Urd) is one of the naturally occurring pyrimidine nucleosides of RNA. 2'-Deoxyuridine (dUrd) is a naturally occurring modified form of Urd, but is not one of the canonical DNA nucleosides. In order to understand the effects of sodium cationization on the conformations and energetics of Urd and dUrd, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and density functional theory (DFT) calculations are performed. By comparing the calculated IR spectra of [Urd+Na]+ and [dUrd+Na]+ with the measured IRMPD spectra, the stable low-energy conformers populated in the experiments are determined. Anti oriented bidentate O2 and O2' binding conformers of [Urd+Na]+ are the dominant conformers populated in the experiments, whereas syn oriented tridentate O2, O4', and O5' binding conformers of [dUrd+Na]+ are dominantly populated in the experiments. The 2'-hydroxyl substituent of Urd stabilizes the anti oriented O2 binding conformers of [Urd+Na]+. Significant differences between the measured IRMPD and calculated IR spectra for complexes of [Urd+Na]+ and [dUrd+Na]+ involving minor tautomeric forms of the nucleobase make it obvious that none are populated in the experiments. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized Urd and dUrd follow the order: [dUrd+H]+ < [Urd+H]+ < [dUrd+Na]+ < [Urd+Na]+. The 2'-deoxy modification is found to weaken the glycosidic bond of dUrd versus that of Urd for the sodium cationized uridine nucleosides.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - J Gao
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M U Munshi
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Gannamani B, Shin JW. Investigation of collision-induced dissociation products and structures of gas-phase [ M·GlyGlyHis-H] + ( M = Fe, Ni, Cu, and Zn) complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:22-27. [PMID: 28657447 DOI: 10.1177/1469066717694174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Collision-induced dissociation is carried out for electrosprayed [Fe·GlyGlyHis-H]+, [Ni·GlyGlyHis-H]+, [Cu·GlyGlyHis-H]+, and [Zn·GlyGlyHis-H]+ complexes. [Fe·GlyGlyHis-H]+, [Ni·GlyGlyHis-H]+, and [Zn·GlyGlyHis-H]+ yield metal-bound peptide sequence ions and dehydrated ions as primary products, whereas [Cu·GlyGlyHis-H]+ generates a more extensive series of metal-bound sequence ions and a product arising from the unusual loss of a formaldehyde moiety; dehydration is significantly suppressed for this complex. Density functional theory calculations show that the copper ion-deprotonated peptide binding energy is substantially higher than those in other complexes, suggesting that there is a correlation between ion-ligand binding energy and their fragmentation behavior.
Collapse
Affiliation(s)
- Bharathi Gannamani
- Division of Chemistry and Biological Sciences, Governors State University, University Park, IL 60484-0975, USA
| | - Joong-Won Shin
- Division of Chemistry and Biological Sciences, Governors State University, University Park, IL 60484-0975, USA
| |
Collapse
|
13
|
Power B, Haldys V, Salpin JY, Fridgen TD. Structures of [M(Ura-H)(H2 O)n ](+) (M = Mg, Ca, Sr, Ba; n = 1-3) complexes in the gas phase by IRMPD spectroscopy and theoretical studies. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:236-244. [PMID: 26956390 DOI: 10.1016/j.ijms.2017.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 05/17/2023]
Abstract
The structures of singly and doubly (and for Mg, triply) hydrated group 2 metal dications bound to deprotonated uracil were explored in the gas phase using infrared multiple photon dissociation spectroscopy in the mid-infrared region (1000-1900 cm(-1) ) and the O-H/N-H stretching region (2700-3800 cm(-1) ) in a Fourier transform ion cyclotron resonance mass spectrometer. The infrared multiple photon dissociation spectra were then compared with the computed IR spectra for various isomers. Calculations were performed using B3LYP with the 6-31 + G(d,p) basis set for all atoms except Ba(2+) and Sr(2+) , for which the LANL2DZ or the def2-TZVPP basis sets with relativistic core potentials were used. Atoms-in-molecules analysis was conducted for all lowest energy structures. The lowest energy isomers in all cases are those in which the one uracil is deprotonated at the N3 position, and the metal is coordinated to the N3 and O4 of uracil. Regardless of the degree of solvation, all water molecules are bound to the metal ion and participate in a hydrogen bond with a carbonyl of the uracil moiety.
Collapse
Affiliation(s)
- Barry Power
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Violette Haldys
- Université d'Evry Val d'Essonne - Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Bâtiment Maupertuis, Boulevard François Mitterrand, 91025, Evry, France
- CNRS UMR 8587
| | - Jean-Yves Salpin
- Université d'Evry Val d'Essonne - Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Bâtiment Maupertuis, Boulevard François Mitterrand, 91025, Evry, France
- CNRS UMR 8587
| | - Travis D Fridgen
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| |
Collapse
|