1
|
Polasa A, Badiee SA, Moradi M. Deciphering the Interdomain Coupling in a Gram-Negative Bacterial Membrane Insertase. J Phys Chem B 2024; 128:9734-9744. [PMID: 39329451 PMCID: PMC11472308 DOI: 10.1021/acs.jpcb.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
YidC is a membrane protein that plays an important role in inserting newly generated proteins into lipid membranes. The Sec-dependent complex is responsible for inserting proteins into the lipid bilayer in bacteria. YidC facilitates the insertion and folding of membrane proteins, both in conjunction with the Sec complex and independently. Additionally, YidC acts as a chaperone during the folding of proteins. Multiple investigations have conclusively shown that Gram-positive bacterial YidC has Sec-independent insertion mechanisms. Through the use of microsecond-level all-atom molecular dynamics (MD) simulations, we have carried out an in-depth investigation of the YidC protein originating from Gram-negative bacteria. This research sheds light on the significance of multiple domains of the YidC structure at a detailed molecular level by utilizing equilibrium MD simulations. Specifically, multiple models of YidC embedded in the lipid bilayer were constructed to characterize the critical role of the C2 loop and the periplasmic domain (PD) present in Gram-negative YidC, which is absent in its Gram-positive counterpart. Based on our results, the C2 loop plays a role in the overall stabilization of the protein, most notably in the transmembrane (TM) region, and it also has an allosteric influence on the PD region. We have found critical inter- and intradomain interactions that contribute to the stability of the protein and its function. Finally, our study provides a hypothetical Sec-independent insertion mechanism for Gram-negative bacterial YidC.
Collapse
Affiliation(s)
- Adithya Polasa
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Shadi A. Badiee
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Govind Kumar V, Polasa A, Agrawal S, Kumar TKS, Moradi M. Binding affinity estimation from restrained umbrella sampling simulations. NATURE COMPUTATIONAL SCIENCE 2023; 3:59-70. [PMID: 38177953 PMCID: PMC10766565 DOI: 10.1038/s43588-022-00389-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2024]
Abstract
The protein-ligand binding affinity quantifies the binding strength between a protein and its ligand. Computer modeling and simulations can be used to estimate the binding affinity or binding free energy using data- or physics-driven methods or a combination thereof. Here we discuss a purely physics-based sampling approach based on biased molecular dynamics simulations. Our proposed method generalizes and simplifies previously suggested stratification strategies that use umbrella sampling or other enhanced sampling simulations with additional collective-variable-based restraints. The approach presented here uses a flexible scheme that can be easily tailored for any system of interest. We estimate the binding affinity of human fibroblast growth factor 1 to heparin hexasaccharide based on the available crystal structure of the complex as the initial model and four different variations of the proposed method to compare against the experimentally determined binding affinity obtained from isothermal titration calorimetry experiments.
Collapse
Affiliation(s)
- Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
4
|
Polasa A, Hettige J, Immadisetty K, Moradi M. An investigation of the YidC-mediated membrane insertion of Pf3 coat protein using molecular dynamics simulations. Front Mol Biosci 2022; 9:954262. [PMID: 36046607 PMCID: PMC9421054 DOI: 10.3389/fmolb.2022.954262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
YidC is a membrane protein that facilitates the insertion of newly synthesized proteins into lipid membranes. Through YidC, proteins are inserted into the lipid bilayer via the SecYEG-dependent complex. Additionally, YidC functions as a chaperone in protein folding processes. Several studies have provided evidence of its independent insertion mechanism. However, the mechanistic details of the YidC SecY-independent protein insertion mechanism remain elusive at the molecular level. This study elucidates the insertion mechanism of YidC at an atomic level through a combination of equilibrium and non-equilibrium molecular dynamics (MD) simulations. Different docking models of YidC-Pf3 in the lipid bilayer were built in this study to better understand the insertion mechanism. To conduct a complete investigation of the conformational difference between the two docking models developed, we used classical molecular dynamics simulations supplemented with a non-equilibrium technique. Our findings indicate that the YidC transmembrane (TM) groove is essential for this high-affinity interaction and that the hydrophilic nature of the YidC groove plays an important role in protein transport across the cytoplasmic membrane bilayer to the periplasmic side. At different stages of the insertion process, conformational changes in YidC's TM domain and membrane core have a mechanistic effect on the Pf3 coat protein. Furthermore, during the insertion phase, the hydration and dehydration of the YidC's hydrophilic groove are critical. These results demonstrate that Pf3 coat protein interactions with the membrane and YidC vary in different conformational states during the insertion process. Finally, this extensive study directly confirms that YidC functions as an independent insertase.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
5
|
Proton Coupling and the Multiscale Kinetic Mechanism of a Peptide Transporter. Biophys J 2022; 121:2266-2278. [PMID: 35614850 DOI: 10.1016/j.bpj.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022] Open
Abstract
Proton coupled peptide transporters (POTs) are crucial for the uptake of di- and tri-peptides as well as drug and pro-drug molecules in prokaryotes and eukaryotic cells. We illustrate from multiscale modeling how transmembrane proton flux couples within a POT protein to drive essential steps of the full functional cycle: 1) protonation of a glutamate on transmembrane helix (TM) 7 opens the extracellular gate, allowing ligand entry; 2) inward proton flow induces the cytosolic release of ligand by varying the protonation state of a second conserved glutamate on TM10; 3) proton movement between TM7 and TM10 is thermodynamically driven and kinetically permissible via water proton shuttling without the participation of ligand. Our results, for the first time, give direct computational confirmation for the alternating access model of POTs, and point to a quantitative multiscale kinetic picture of the functioning protein mechanism.
Collapse
|
6
|
Immadisetty K, Polasa A, Shelton R, Moradi M. Elucidating the molecular basis of spontaneous activation in an engineered mechanosensitive channel. Comput Struct Biotechnol J 2022; 20:2539-2550. [PMID: 35685356 PMCID: PMC9156883 DOI: 10.1016/j.csbj.2022.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Mechanosensitive channel of large conductance (MscL) detects and responds to changes in the pressure profile of cellular membranes and transduces the mechanical energy into electrical and/or chemical signals. MscL can be activated using ultrasonic or chemical activation methods to improve the absorption of medicines and bioactive compounds into cells. However, re-engineering chemical signals such as pH change can trigger channel activation in MscL. This study elucidates the activation mechanism of an engineered MscL at an atomic level through a combination of equilibrium and non-equilibrium (NE) molecular dynamics (MD) simulations. Comparing the wild-type (WT) and engineered MscL activation processes suggests that the two systems are likely associated with different active states and different transition pathways. These findings indicate that (1) periplasmic loops play a key role in the activation process of MscL, (2) the loss of various backbone-backbone hydrogen bonds and salt bridge interactions in the engineered MscL channel causes the spontaneous opening of the channel, and (3) the most significant interactions lost during the activation process are between the transmembrane helices 1 and 2 in engineered MscL channel. The orientation-based biasing approach for producing and optimizing an open MscL model used in this work is a promising way to characterize unknown protein functional states and investigate the activation processes in ion channels and transmembrane proteins in general. This work paves the way for a computational framework for engineering more efficient pH-sensing mechanosensitive channels.
Collapse
Affiliation(s)
- Kalyan Immadisetty
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Reid Shelton
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
7
|
Govind Kumar V, Ogden DS, Isu UH, Polasa A, Losey J, Moradi M. Prefusion spike protein conformational changes are slower in SARS-CoV-2 than in SARS-CoV-1. J Biol Chem 2022; 298:101814. [PMID: 35278433 PMCID: PMC8907130 DOI: 10.1016/j.jbc.2022.101814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/01/2023] Open
Abstract
Within the last 2 decades, severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) have caused two major outbreaks; yet, for reasons not fully understood, the coronavirus disease 2019 pandemic caused by SARS-CoV-2 has been significantly more widespread than the 2003 SARS epidemic caused by SARS-CoV-1, despite striking similarities between these two viruses. The SARS-CoV-1 and SARS-CoV-2 spike proteins, both of which bind to host cell angiotensin-converting enzyme 2, have been implied to be a potential source of their differential transmissibility. However, the mechanistic details of prefusion spike protein binding to angiotensin-converting enzyme 2 remain elusive at the molecular level. Here, we performed an extensive set of equilibrium and nonequilibrium microsecond-level all-atom molecular dynamics simulations of SARS-CoV-1 and SARS-CoV-2 prefusion spike proteins to determine their differential dynamic behavior. Our results indicate that the active form of the SARS-CoV-2 spike protein is more stable than that of SARS-CoV-1 and the energy barrier associated with the activation is higher in SARS-CoV-2. These results suggest that not only the receptor-binding domain but also other domains such as the N-terminal domain could play a crucial role in the differential binding behavior of SARS-CoV-1 and SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Dylan S Ogden
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ugochi H Isu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - James Losey
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA.
| |
Collapse
|
8
|
Govind Kumar V, Agrawal S, Kumar TKS, Moradi M. Mechanistic Picture for Monomeric Human Fibroblast Growth Factor 1 Stabilization by Heparin Binding. J Phys Chem B 2021; 125:12690-12697. [PMID: 34762427 DOI: 10.1021/acs.jpcb.1c07772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human fibroblast growth factor (FGF) 1 or hFGF1 is a member of the FGF family that is involved in various vital processes such as cell proliferation, cell differentiation, angiogenesis, and wound healing. hFGF1, which is associated with low stability in vivo, is known to be stabilized by binding heparin sulfate, a glycosaminoglycan that aids the protein in the activation of its cell surface receptor. The poor thermal and proteolytic stability of hFGF1 and the stabilizing role of heparin have long been observed experimentally; however, the mechanistic details of these phenomena are not well understood. Here, we have used microsecond-level equilibrium molecular dynamics (MD) simulations to quantitatively characterize the structural dynamics of monomeric hFGF1 in the presence and absence of heparin hexasaccharide. We have observed a conformational change in the heparin-binding pocket of hFGF1 that occurs only in the absence of heparin. Several intramolecular interactions were also identified within the heparin-binding pocket that form only when hFGF1 interacts with heparin. The loss of both intermolecular and intramolecular interactions in the absence of heparin plausibly leads to the observed conformational change. This conformational transition results in increased flexibility of the heparin-binding pocket and provides an explanation for the susceptibility of apo hFGF1 to proteolytic degradation and thermal instability. This study provides a glimpse into mechanistic details of the heparin-mediated stabilization of hFGF1 and encourages the use of microsecond-level MD in studying the effect of binding on protein structure and dynamics. In addition, the observed differential behavior of hFGF1 in the absence and presence of heparin provides an example, where microsecond-level all-atom MD simulations are necessary to see functionally relevant biomolecular phenomena that otherwise will not be observed on sub-microsecond time scales.
Collapse
Affiliation(s)
- Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
9
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
10
|
Immadisetty K, Moradi M. Mechanistic Picture for Chemomechanical Coupling in a Bacterial Proton-Coupled Oligopeptide Transporter from Streptococcus Thermophilus. J Phys Chem B 2021; 125:9738-9750. [PMID: 34424716 DOI: 10.1021/acs.jpcb.1c03982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-coupled oligopeptide transporters (POTs) use the proton electrochemical gradient to transport peptides across the cell membrane. Despite the significant biological and biomedical relevance of these proteins, a detailed mechanistic picture for chemomechanical couplings involved in substrate/proton transport and protein structural changes is missing. Therefore, we performed microsecond-level molecular dynamics simulations of bacterial POT PepTSt, which shares ∼80% sequence identity with the human POT, PepT1, in the substrate-binding region. Three different conformational states of PepTSt were simulated, including (i) occluded, apo, (ii) inward-facing, apo, and (iii) inward-facingoccluded, Leu-Ala bound. We propose that the interaction of R33 with E299 and E300 acts as a conformational switch (i.e., to trigger the conformational change from an inward- to outward-facing state) in the substrate transport. Additionally, we propose that E299 and E400 disengage from interacting with the substrate either through protonation or through coordination with a cation for the substrate to get transported. This study provides clues to understand the chemomechanical couplings in POTs and paves the way to decipher the molecular-level underpinnings of the structure-function relationship in this important family of transporters.
Collapse
Affiliation(s)
| | - Mahmoud Moradi
- University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
11
|
Immadisetty K, Sun B, Kekenes-Huskey PM. Structural Changes beyond the EF-Hand Contribute to Apparent Calcium Binding Affinities: Insights from Parvalbumins. J Phys Chem B 2021; 125:6390-6405. [PMID: 34115511 PMCID: PMC8848088 DOI: 10.1021/acs.jpcb.1c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Members of the parvalbumin (PV) family of calcium (Ca2+) binding proteins (CBPs) share a relatively high level of sequence similarity. However, their Ca2+ affinities and selectivities against competing ions like Mg2+ can widely vary. We conducted molecular dynamics simulations of several α-parvalbumin (αPV) constructs with micromolar to nanomolar Ca2+ affinities to identify structural and dynamic features that contribute to their binding of ions. Specifically, we examined a D94S/G98E construct with a lower Ca2+ affinity (≈-18 kcal/mol) relative to the wild type (WT) (≈-22 kcal/mol) and an S55D/E59D variant with enhanced affinity (≈-24 kcal/mol). Additionally, we also examined the binding of Mg2+ to these isoforms, which is much weaker than Ca2+. We used mean spherical approximation (MSA) theory to evaluate ion binding thermodynamics within the proteins' EF-hand domains to account for the impact of ions' finite sizes and the surrounding electrolyte composition. While the MSA scores differentiated Mg2+ from Ca2+, they did not indicate that Ca2+ binding affinities at the binding loop differed between the PV isoforms. Instead, molecular mechanics generalized Born surface area (MM/GBSA) approximation energies, which we used to quantify the thermodynamic cost of structural rearrangement of the proteins upon binding ions, indicated that S55D/E59D αPV favored Ca2+ binding by -20 kcal/mol relative to WT versus 30 kcal/mol for D94S/G98E αPV. Meanwhile, Mg2+ binding was favored for the S55D/E59D αPV and D94S/G98E αPV variants by -18.32 and -1.65 kcal/mol, respectively. These energies implicate significant contributions to ion binding beyond oxygen coordination at the binding loop, which stemmed from changes in α-helicity, β-sheet character, and hydrogen bonding. Hence, Ca2+ affinity and selectivity against Mg2+ are emergent properties stemming from both local effects within the proteins' ion binding sites as well as non-local contributions elsewhere. Our findings broaden our understanding of the molecular bases governing αPV ion binding that are likely shared by members of the broad family of CBPs.
Collapse
Affiliation(s)
| | - Bin Sun
- Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | |
Collapse
|
12
|
Govind Kumar V, Ogden DS, Isu U, Polasa A, Losey J, Moradi M. Differential Dynamic Behavior of Prefusion Spike Proteins of SARS Coronaviruses 1 and 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33398271 DOI: 10.1101/2020.12.25.424008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The coronavirus spike protein, which binds to the same human receptor in both SARS-CoV-1 and 2, has been implied to be a potential source of their differential transmissibility. However, the mechanistic details of spike protein binding to its human receptor remain elusive at the molecular level. Here, we have used an extensive set of unbiased and biased microsecond-level all-atom molecular dynamics (MD) simulations of SARS-CoV-1 and 2 spike proteins to determine the differential dynamic behavior of prefusion spike protein structure in the two viruses. Our results indicate that the active form of the SARS-CoV-2 spike protein is more stable than that of SARS-CoV-1 and the energy barrier associated with the activation is higher in SARS-CoV-2. Our results also suggest that not only the receptor binding domain (RBD) but also other domains such as the N-terminal domain (NTD) could play a role in the differential binding behavior of SARS-CoV-1 and 2 spike proteins.
Collapse
|
13
|
Batista MRB, Watts A, José Costa-Filho A. Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters. J Chem Theory Comput 2019; 15:6433-6443. [PMID: 31639304 DOI: 10.1021/acs.jctc.9b00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins involved in peptide uptake and transport belong to the proton-coupled oligopeptide transporter (POT) family. Crystal structures of POT family members reveal a common fold consisting of two domains of six transmembrane α helices that come together to form a "V" shaped transporter with a central substrate binding site. Proton-coupled oligopeptide transporters operate through an alternate access mechanism, where the membrane transporter undergoes global conformational changes, alternating between inward-facing (IF), outward-facing (OF), and occluded (OC) states. Conformational transitions are promoted by proton and ligand binding; however, due to the absence of crystallographic models of the outward-open state, the role of H+ and ligands is still not fully understood. To provide a comprehensive picture of the POT conformational equilibrium, conventional and enhanced sampling molecular dynamics simulations of PepTst in the presence or absence of ligand and protonation were performed. Free-energy profiles of the conformational variability of PepTst were obtained from microseconds of adaptive biasing force (ABF) simulations. Our results reveal that both proton and ligand significantly change the conformational free-energy landscape. In the absence of ligand and protonation, only transitions involving IF and OC states are allowed. After protonation of the residue Glu300, the wider free-energy well for Glu300 protonated PepTst indicates a greater conformational variability relative to the apo system, and OF conformations became accessible. For the Glu300 protonated Holo-PepTst, the presence of a second free-energy minimum suggests that OF conformations are not only accessible, but also stable. The differences in the free-energy profiles demonstrate that transitions toward outward-facing conformation occur only after protonation, which is likely the first step in the mechanism of peptide transport. Our extensive ABF simulations provide a fully atomic description of all states of the transport process, offering a model for the alternating access mechanism and how protonation and ligand control the conformational changes.
Collapse
Affiliation(s)
- Mariana R B Batista
- Ribeirão Preto School of Philosophy, Sciences and Letters , University of São Paulo , Ribeirao Preto , São Paulo 14040901 , Brazil
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 2JD , United Kingdom
| | - Antonio José Costa-Filho
- Ribeirão Preto School of Philosophy, Sciences and Letters , University of São Paulo , Ribeirao Preto , São Paulo 14040901 , Brazil
| |
Collapse
|
14
|
The Role of a Crystallographically Unresolved Cytoplasmic Loop in Stabilizing the Bacterial Membrane Insertase YidC2. Sci Rep 2019; 9:14451. [PMID: 31595020 PMCID: PMC6783614 DOI: 10.1038/s41598-019-51052-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
YidC, a bacterial member of the YidC/Alb3/Oxa1 insertase family, mediates membrane protein assembly and insertion. Cytoplasmic loops are known to have functional significance in membrane proteins such as YidC. Employing microsecond-level molecular dynamics (MD) simulations, we show that the crystallographically unresolved C2 loop plays a crucial role in the structural dynamics of Bacillus halodurans YidC2. We have modeled the C2 loop and used all- atom MD simulations to investigate the structural dynamics of YidC2 in its apo form, both with and without the C2 loop. The C2 loop was found to stabilize the entire protein and particularly the C1 region. C2 was also found to stabilize the alpha-helical character of the C-terminal region. Interestingly, the highly polar or charged lipid head groups of the simulated membranes were found to interact with and stabilize the C2 loop. These findings demonstrate that the crystallographically unresolved loops of membrane proteins could be important for the stabilization of the protein despite the apparent lack of structure, which could be due to the absence of the relevant lipids to stabilize them in crystallographic conditions.
Collapse
|
15
|
Wu Z, Alibay I, Newstead S, Biggin PC. Proton Control of Transitions in an Amino Acid Transporter. Biophys J 2019; 117:1342-1351. [PMID: 31500802 PMCID: PMC6818167 DOI: 10.1016/j.bpj.2019.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Amino acid transport into the cell is often coupled to the proton electrochemical gradient, as found in the solute carrier 36 family of proton-coupled amino acid transporters. Although no structure of a human proton-coupled amino acid transporter exists, the crystal structure of a related homolog from bacteria, GkApcT, has recently been solved in an inward-occluded state and allows an opportunity to examine how protons are coupled to amino acid transport. Our working hypothesis is that release of the amino acid substrate is facilitated by the deprotonation of a key glutamate residue (E115) located at the bottom of the binding pocket, which forms part of the intracellular gate, allowing the protein to transition from an inward-occluded to an inward-open conformation. During unbiased molecular dynamics simulations, we observed a transition from the inward-occluded state captured in the crystal structure to a much more open state, which we consider likely to be representative of the inward-open state associated with substrate release. To explore this and the role of protons in these transitions, we have used umbrella sampling to demonstrate that the transition from inward occluded to inward open is more energetically favorable when E115 is deprotonated. That E115 is likely to be protonated in the inward-occluded state and deprotonated in the inward-open state is further confirmed via the use of absolute binding free energies. Finally, we also show, via the use of absolute binding free energy calculations, that the affinity of the protein for alanine is very similar regardless of either the conformational state or the protonation of E115, presumably reflecting the fact that all the key interactions are deep within the binding cavity. Together, our results give a detailed picture of the role of protons in driving one of the major transitions in this transporter.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Immadisetty K, Hettige J, Moradi M. Lipid-Dependent Alternating Access Mechanism of a Bacterial Multidrug ABC Exporter. ACS CENTRAL SCIENCE 2019; 5:43-56. [PMID: 30693324 PMCID: PMC6346382 DOI: 10.1021/acscentsci.8b00480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/09/2023]
Abstract
By undergoing conformational changes, active membrane transporters alternate between an inward-facing (IF) and an outward-facing (OF) state to transport their substrates across cellular membrane. The conformational landscape of membrane transporters, however, could be influenced by their environment, and the dependence of the alternating access mechanism on the lipid composition has not been understood at the molecular level. We have performed an extensive set of microsecond-level all-atom molecular dynamics (MD) simulations on bacterial ATP binding cassette (ABC) exporter Sav1866 in six different phosphocholine (PC) and phosphoethanolamine (PE) lipid membrane environments. This study mainly focuses on the energetically downhill OF-to-IF conformational transition of Sav1866 upon the ATP hydrolysis. We observe that the transporter undergoes large-scale conformational changes in the PE environment, particularly in the POPE lipids, resulting in an IF-occluded conformation, a transition that does not occur when the transporter is embedded in any of the PC lipid bilayers. We propose that the PE lipids facilitate the closing of the protein on the periplasmic side due to their highly polar headgroups that mediate the interaction of the two transmembrane (TM) bundles by a network of lipid-lipid and lipid-protein hydrogen bonds. POPE lipids in particular facilitate the closure of periplasmic gate by promoting a hinge formation in TM helices and an interbundle salt bridge formation. This study explains how the alternating access mechanism and the flippase activity in ABC exporters could be lipid-dependent.
Collapse
|
17
|
Martinez Molledo M, Quistgaard EM, Löw C. Tripeptide binding in a proton-dependent oligopeptide transporter. FEBS Lett 2018; 592:3239-3247. [PMID: 30194725 PMCID: PMC6221056 DOI: 10.1002/1873-3468.13246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023]
Abstract
Proton-dependent oligopeptide transporters (POTs) are important for the uptake of di-/tripeptides in many organisms and for drug transport in humans. The binding mode of dipeptides has been well described. However, it is still debated how tripeptides are recognized. Here, we show that tripeptides of the sequence Phe-Ala-Xxx bind with similar affinities as dipeptides to the POT transporter from Streptococcus thermophilus (PepTS t ). We furthermore determined a 2.3-Å structure of PepTS t in complex with Phe-Ala-Gln. The phenylalanine and alanine residues of the peptide adopt the same positions as previously observed for the Phe-Ala dipeptide, while the glutamine side chain extends into a hitherto uncharacterized pocket. This pocket is adaptable in size and can likely accommodate a wide variety of peptide side chains.
Collapse
Affiliation(s)
- Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Esben M Quistgaard
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|