1
|
Liu J, Yang J, Zhu G, Li J, Li Y, Zhai Y, Song H, Yang Y, Li H. Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved. JACS AU 2024; 4:4455-4465. [PMID: 39610737 PMCID: PMC11600156 DOI: 10.1021/jacsau.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Intramolecular vibrational energy transfer is gaining tremendous attention as a regulator of condensed-phase behavior and reactions. In polyatomic molecules, this transfer is an ultrafast process involving multiple modes with numerous quantum states. The inherent complexity and rapid evolution of these processes pose significant challenges to experimental observation, and the high computational costs make full quantum mechanical calculations impractical with current technology. In the intramolecular energy transfer process, whether the doorway modes are intermediaries for transferring energy from lattice phonons to high-frequency intramolecular vibrational modes has been a controversial issue. However, the broad range of doorway modes complicates the experimental identification of a specific doorway in the transfer process corresponding to a specific end point. Here, for the first time, we utilize a combination of vibrational projection, statistical analysis, and the local quantum vibrational embedding (LQVE) method to elucidate the ultrafast energy transfer pathways that upconvert energy from lattice phonons to intramolecular modes in the typical energetic material β-HMX. This approach enables us to resolve the coupled vibrational mode groups, identify the most probable energy transfer pathways corresponding to the different final modes, and clearly confirm that the doorway region is a mandatory pathway for energy transfer. The LQVE method's time-dependent and quantum state-resolved advantages are leveraged to reveal the microscopic mechanism of the energy transfer process. The time scale of these processes is determined at about 1 ps, and the first theoretical two-dimensional infrared spectroscopy evidence is provided, which is confirmed by the experimental results. These findings deliver important insights into the fundamental mechanisms of ultrafast energy transfer in energetic materials, providing theoretical support for controlling explosive behavior and designing new explosives. The methodologies developed in this work can be extended to other condensed phase materials and used to evaluate the coupling between multiple vibrational modes.
Collapse
Affiliation(s)
- Jia Liu
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Jitai Yang
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Gangbei Zhu
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jiarui Li
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - You Li
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huajie Song
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Yanqiang Yang
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
| | - Hui Li
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
2
|
Zhao J, Wang J. Vibrational Energy Transfer in Energetic Ionic Liquid 4-Amino-1H-1,2,4-triazolium Nitrate: Ab Initio Molecular Dynamics Simulations. J Phys Chem A 2024; 128:7524-7535. [PMID: 39213588 DOI: 10.1021/acs.jpca.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Energetic ionic liquids (EILs) represent a distinctive class of energetic materials with substantial research significance and promising energetic applications. In this work, we delved into the vibrational energy transfer mechanism within the EILs, specifically focusing on 4-amino-1H-1,2,4-triazolium nitrate (ATN), utilizing ab initio molecular dynamics simulations. Our work illustrates distinct energy transfer patterns for different vibrational modes. Upon exciting the stretching vibration of the NH group in the cationic group, vibrational energy preferentially migrates to the neighboring CH bond within the aromatic ring on the femtosecond to picosecond time scales and notably in an in-phase coherent energy transfer fashion. In contrast, exciting the stretching vibration of the N9H11 bond triggers the transfer of vibrational energy to its neighboring N9H10 bond in an out-of-phase coherent fashion. Conversely, exciting the stretching vibration of the N9H10 bond leads to energy transfer predominantly through intermolecular pathways due to the hydrogen-bonding interaction between this bond and the anion. The vibrational energy of the excited N9H10 stretch is shown to dissipate very rapidly, displaying a fast component (with a time constant as short as ca. 7 fs) and a slow component (ca. 230 fs).
Collapse
Affiliation(s)
- Juan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Hassani M, Mallon CJ, Monzy JN, Schmitz AJ, Brewer SH, Fenlon EE, Tucker MJ. Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect. J Chem Phys 2023; 158:224201. [PMID: 37309893 PMCID: PMC10275622 DOI: 10.1063/5.0153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
The regulation of intramolecular vibrational energy redistribution (IVR) to influence energy flow within molecular scaffolds provides a way to steer fundamental processes of chemistry, such as chemical reactivity in proteins and design of molecular diodes. Using two-dimensional infrared (2D IR) spectroscopy, changes in the intensity of vibrational cross-peaks are often used to evaluate different energy transfer pathways present in small molecules. Previous 2D IR studies of para-azidobenzonitrile (PAB) demonstrated that several possible energy pathways from the N3 to the cyano-vibrational reporters were modulated by Fermi resonance, followed by energy relaxation into the solvent [Schmitz et al., J. Phys. Chem. A 123, 10571 (2019)]. In this work, the mechanisms of IVR were hindered via the introduction of a heavy atom, selenium, into the molecular scaffold. This effectively eliminated the energy transfer pathway and resulted in the dissipation of the energy into the bath and direct dipole-dipole coupling between the two vibrational reporters. Several structural variations of the aforementioned molecular scaffold were employed to assess how each interrupted the energy transfer pathways, and the evolution of 2D IR cross-peaks was measured to assess the changes in the energy flow. By eliminating the energy transfer pathways through isolation of specific vibrational transitions, through-space vibrational coupling between an azido (N3) and a selenocyanato (SeCN) probe is facilitated and observed for the first time. Thus, the rectification of this molecular circuitry is accomplished through the inhibition of energy flow using heavy atoms to suppress the anharmonic coupling and, instead, favor a vibrational coupling pathway.
Collapse
Affiliation(s)
- Majid Hassani
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | - Judith N. Monzy
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Andrew J. Schmitz
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Scott H. Brewer
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Edward E. Fenlon
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | - Matthew J. Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
4
|
Banas AM, Banas K, Breese MBH. Classification of the Residues after High and Low Order Explosions Using Machine Learning Techniques on Fourier Transform Infrared (FTIR) Spectra. Molecules 2023; 28:molecules28052233. [PMID: 36903479 PMCID: PMC10004765 DOI: 10.3390/molecules28052233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Forensic science is a field that requires precise and reliable methods for the detection and analysis of evidence. One such method is Fourier Transform Infrared (FTIR) spectroscopy, which provides high sensitivity and selectivity in the detection of samples. In this study, the use of FTIR spectroscopy and statistical multivariate analysis to identify high explosive (HE) materials (C-4, TNT, and PETN) in the residues after high- and low-order explosions is demonstrated. Additionally, a detailed description of the data pre-treatment process and the use of various machine learning classification techniques to achieve successful identification is also provided. The best results were obtained with the hybrid LDA-PCA technique, which was implemented using the R environment, a code-driven open-source platform that promotes reproducibility and transparency.
Collapse
Affiliation(s)
- Agnieszka M. Banas
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
- Correspondence:
| | - Krzysztof Banas
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Mark B. H. Breese
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| |
Collapse
|
5
|
Theoretically Revealing the Response of Intermolecular Vibration Energy Transfer and Decomposition Process of the DNTF System to Electric Fields Using Two-Dimensional Infrared Spectra. Int J Mol Sci 2023; 24:ijms24054352. [PMID: 36901784 PMCID: PMC10002173 DOI: 10.3390/ijms24054352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The external electric field (E-field), which is an important stimulus, can change the decomposition mechanism and sensitivity of energetic materials. As a result, understanding the response of energetic materials to external E-fields is critical for their safe use. Motivated by recent experiments and theories, the two-dimensional infrared (2D IR) spectra of 3,4-bis (3-nitrofurazan-4-yl) furoxan (DNTF), which has a high energy, a low melting point, and comprehensive properties, were theoretically investigated. Cross-peaks were observed in 2D IR spectra under different E-fields, which demonstrated an intermolecular vibration energy transfer; the furazan ring vibration was found to play an important role in the analysis of vibration energy distribution and was extended over several DNTF molecules. Measurements of the non-covalent interactions, with the support of the 2D IR spectra, indicated that there were obvious non-covalent interactions among different DNTF molecules, which resulted from the conjugation of the furoxan ring and the furazan ring; the direction of the E-field also had a significant influence on the strength of the weak interactions. Furthermore, the calculation of the Laplacian bond order, which characterized the C-NO2 bonds as trigger bonds, predicted that the E-fields could change the thermal decomposition process of DNTF while the positive E-field facilitates the breakdown of the C-NO2 in DNTFⅣ molecules. Our work provides new insights into the relationship between the E-field and the intermolecular vibration energy transfer and decomposition mechanism of the DNTF system.
Collapse
|
6
|
Kumar G, Chung PW. Selective Phonon Stimulation Mechanism to Tune Thermal Transport. ACS OMEGA 2022; 7:12787-12794. [PMID: 35474781 PMCID: PMC9026079 DOI: 10.1021/acsomega.1c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we determine the degree to which changes can be induced in the equilibrium thermal diffusivity and conductivity of a material via a selective nonequilibrium infrared stimulation mechanism for phonons. Using the molecular crystal RDX, we use detailed momentum-dependent coupling information across the entire Brillouin zone and the phonon gas model to show that stimulating selected modes in the spectrum of a target material can induce substantial changes in the overall thermal transport properties. Specifically in the case of RDX, stimulating modes at ∼22.74 cm-1 over a linewidth of 1 cm-1 can lead to enhanced scattering rates that reduce the overall thermal diffusivity and conductivity by 15.58 and 12.46%, respectively, from their equilibrium values. Due to the rich spectral content in the materials, however, stimulating modes near ∼1140.67 cm-1 over a similar bandwidth can produce an increase in the thermal diffusivity and conductivity by 55.73 and 144.07%, respectively. The large changes suggest a mechanism to evoke substantially modulated thermal transport properties through light-matter interaction.
Collapse
|
7
|
Yang F, Shi L, Dong T, Yu P, Hu R, Wu H, Yang Y, Wang J. Solution Structures and Ultrafast Vibrational Energy Dissipation Dynamics in Cyclotetramethylene Tetranitramine. J Chem Phys 2022; 156:194305. [DOI: 10.1063/5.0087297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Steady-state and time-resolved infrared (IR) studies of cyclotetramethylene tetranitramine (HMX) were carried out, using the asymmetric nitro stretch as probe, to investigate its solution structures and vibrational energy transfer processes in pure DMSO and in DMSO/water mixture. Linear IR spectrum in the nitro stretching mode region shows two major bands and one minor band in DMSO but changes to a two-major band mainly picture when adding water as antisolvent of HMX, suggesting a transition from well solvated and less perfect b-conformation to a less solvated and close-to-perfect b-conformation. The latter bears a similar asymmetric nitro stretch vibration profile as the b-polymorph in crystal form. DFT computations of the nitro stretching vibrations suggest HMX in DMSO may be in a NO2 group rotated b-conformation. Two-dimensional IR cross-peak intensity reveals intramolecular energy transfer between the axial and equatorial nitro groups in the β-HMX on the ps time scale, which is slightly faster in the mixed solvent case. The importance of water as an antisolvent in influencing the equilibrium solvation structure, as well as the vibrational and orientational relaxation dynamics of HMX, is discussed.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Chemistry, Chinese Academy of Sciences, China
| | - Lu Shi
- Institute of Chemistry Chinese Academy of Sciences, China
| | - Tiantian Dong
- Institute of Chemistry Chinese Academy of Sciences, China
| | - Pengyun Yu
- Institute of Chemistry, Chinese Academy of Sciences, China
| | - Rong Hu
- Institute of Chemistry Chinese Academy of Sciences, China
| | - Honglin Wu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, China
| | - Yanqiang Yang
- Department of Physics, Harbin Institute of Technology, Harbin Institute of Technology, China
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, Institute of Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
8
|
Intermolecular Vibration Energy Transfer Process in Two CL-20-Based Cocrystals Theoretically Revealed by Two-Dimensional Infrared Spectra. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072153. [PMID: 35408551 PMCID: PMC9000797 DOI: 10.3390/molecules27072153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
Inspired by the recent cocrystallization and theory of energetic materials, we theoretically investigated the intermolecular vibrational energy transfer process and the non-covalent intermolecular interactions between explosive compounds. The intermolecular interactions between 2,4,6-trinitrotoluene (TNT) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and between 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and CL-20 were studied using calculated two-dimensional infrared (2D IR) spectra and the independent gradient model based on the Hirshfeld partition (IGMH) method, respectively. Based on the comparison of the theoretical infrared spectra and optimized geometries with experimental results, the theoretical models can effectively reproduce the experimental geometries. By analyzing cross-peaks in the 2D IR spectra of TNT/CL-20, the intermolecular vibrational energy transfer process between TNT and CL-20 was calculated, and the conclusion was made that the vibrational energy transfer process between CL-20 and TNTII (TNTIII) is relatively slower than between CL-20 and TNTI. As the vibration energy transfer is the bridge of the intermolecular interactions, the weak intermolecular interactions were visualized using the IGMH method, and the results demonstrate that the intermolecular non-covalent interactions of TNT/CL-20 include van der Waals (vdW) interactions and hydrogen bonds, while the intermolecular non-covalent interactions of HMX/CL-20 are mainly comprised of vdW interactions. Further, we determined that the intermolecular interaction can stabilize the trigger bond in TNT/CL-20 and HMX/CL-20 based on Mayer bond order density, and stronger intermolecular interactions generally indicate lower impact sensitivity of energetic materials. We believe that the results obtained in this work are important for a better understanding of the cocrystal mechanism and its application in the field of energetic materials.
Collapse
|
9
|
Wu Y, Yu P, Xia D, Li W, Zhao J, Wang J. Ultrafast Structure and Vibrational Dynamics of a Cyano-Containing Non-Fullerene Acceptor for Organic Solar Cells Revealed by Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2021; 125:11987-11995. [PMID: 34672586 DOI: 10.1021/acs.jpcb.1c04758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-fullerene molecules, such as ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene) indanone)-5,5,11,11-tetrakis(4-hexylphenyl)dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene), are among the most promising non-fullerene acceptors for organic solar cells (OSCs). In this work, using the cyano stretching mode as a vibrational marker, the structural and vibrational energy dynamics of ITIC were examined on an ultrafast time scale with two-dimensional infrared spectroscopy. Two IR-active modes studied here mainly correspond to two anti-symmetric combinations of symmetric and asymmetric stretching vibrations of two C≡N modes originating from two -C(CN)2 chromophores that are located across the ITIC system, which were found to have significantly larger off-diagonal anharmonicity than their corresponding diagonal anharmonicities. This indicates strong anharmonic vibrational coupling between the two modes, which is supported by ab initio anharmonic frequency computations. Transient IR results indicate picosecond intramolecular vibrational energy transfer between the two C≡N modes upon excitation. The structural basis for these vibrational and energetic features is the conjugating molecular frame that is composed of a network of single/double bonds connecting the two -C(CN)2 chromophores and may enable efficient vibration delocalization, in addition to its well-known electron delocalization capability. The importance of the results for the OSC applications is discussed.
Collapse
Affiliation(s)
- Yanzhou Wu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Xia
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiwei Li
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Cole-Filipiak NC, Knepper R, Wood M, Ramasesha K. Mode-Selective Vibrational Energy Transfer Dynamics in 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) Thin Films. J Phys Chem A 2021; 125:7788-7802. [PMID: 34464533 DOI: 10.1021/acs.jpca.1c04800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The coupling of inter- and intramolecular vibrations plays a critical role in initiating chemistry during the shock-to-detonation transition in energetic materials. Herein, we report on the subpicosecond to subnanosecond vibrational energy transfer (VET) dynamics of the solid energetic material 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) by using broadband, ultrafast infrared transient absorption spectroscopy. Experiments reveal VET occurring on three distinct time scales: subpicosecond, 5 ps, and 200 ps. The ultrafast appearance of signal at all probed modes in the mid-infrared suggests strong anharmonic coupling of all vibrations in the solid, whereas the long-lived evolution demonstrates that VET is incomplete, and thus thermal equilibrium is not attained, even on the 100 ps time scale. Density functional theory and classical molecular dynamics simulations provide valuable insights into the experimental observations, revealing compression-insensitive time scales for the initial VET dynamics of high-frequency vibrations and drastically extended relaxation times for low-frequency phonon modes under lattice compression. Mode selectivity of the longest dynamics suggests coupling of the N-N and axial NO2 stretching modes with the long-lived, excited phonon bath.
Collapse
Affiliation(s)
- Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| | - Robert Knepper
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mitchell Wood
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
11
|
Kumar G, VanGessel FG, Munday LB, Chung PW. 3-Phonon Scattering Pathways for Vibrational Energy Transfer in Crystalline RDX. J Phys Chem A 2021; 125:7723-7734. [PMID: 34338515 DOI: 10.1021/acs.jpca.1c03225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A long-held belief is that shock energy induces initiation of an energetic material through an energy up-pumping mechanism involving phonon scattering through doorway modes. In this paper, a Fermi's golden rule-based 3-phonon theoretical analysis of energy up-pumping in RDX is presented that considers possible doorway pathways through which energy transfer occurs. On average, modes with frequencies up to 102 cm-1 scatter quickly and transfer over 99% of the vibrational energy to other low-frequency modes up to 102 cm-1 within 0.16 ps. These low-frequency modes scatter less than 0.5% of the vibrational energy directly to modes with significant nitrogen-nitrogen (NN) activity. The midfrequency modes from 102 to 1331 cm-1 further up-pump the energy to these modes within 5.6 ps. The highest-frequency modes scatter and redistribute a small fraction of the vibrational energy to all other modes, which last over 2000 ps. The midfrequency modes between 457 and 462 cm-1 and between 831 and 1331 cm-1 are the most critical for vibrational heating of the NN modes and phenomena, leading to initiation in energetics. In contrast, modes stimulated by the shock with frequencies up to 102 cm-1 dominate vibrational cooling of the NN modes.
Collapse
Affiliation(s)
- Gaurav Kumar
- Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park 20742, United States
| | - Francis G VanGessel
- US Naval Surface Warfare Center Indian Head Division, Indian Head, Maryland 20640, United States
| | - Lynn B Munday
- Idaho National Laboratory, US Department of Energy, Idaho Falls, Idaho 83415, United States
| | - Peter W Chung
- Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park 20742, United States
| |
Collapse
|
12
|
Cole-Filipiak NC, Knepper R, Wood M, Ramasesha K. Sub-picosecond to Sub-nanosecond Vibrational Energy Transfer Dynamics in Pentaerythritol Tetranitrate. J Phys Chem Lett 2020; 11:6664-6669. [PMID: 32787226 DOI: 10.1021/acs.jpclett.0c01780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The time scale associated with shock-induced detonation is a key property of energetic materials that remains poorly understood. Herein, we test aspects of one potential mechanism, the phonon up-pumping mechanism, where shock compression excites lattice phonon modes, transferring energy to intramolecular vibrations leading to chemical bond cleavage and reaction. Using ultrafast infrared pump-probe spectroscopy on pentaerythritol tetranitrate (PETN), we reveal sub-picosecond vibrational energy transfer (VET) from the photoexcited band at 1660 cm-1 into every other infrared-active mode in the probed frequency range 800-1800 cm-1. Energy transfer processes remain incomplete at 150 ps. Computational predictions from density functional theory are used in tandem to elucidate VET pathways in PETN.
Collapse
Affiliation(s)
- Neil C Cole-Filipiak
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Robert Knepper
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mitchell Wood
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Krupa Ramasesha
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
13
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
14
|
Dong X, Wang S, Yu P, Yang F, Zhao J, Wu LZ, Tung CH, Wang J. Ultrafast Vibrational Energy Transfer through the Covalent Bond and Intra- and Intermolecular Hydrogen Bonds in a Supramolecular Dimer by Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2020; 124:544-555. [PMID: 31873023 DOI: 10.1021/acs.jpcb.9b10431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the structural fluctuations and vibrational energy transfer dynamics in a supramolecular homodimer model, which is composed of 2-(9-anthracene)ureido-6-(1-undecyl)-4[1H]-pyrimidinone (UPAn) with quadruple intermolecular and single intramolecular hydrogen bonds (HBs), have been examined using ultrafast two-dimensional infrared (2D IR) and steady-state IR spectroscopies. A less structurally fluctuating intermolecular HB is found between the pyrimidinone C═O and ureido N-H groups. However, a larger structurally fluctuating intramolecular HB is suggested by the equilibrium and dynamical line-shape measurements of the ureido C═O stretch. Further, dynamical time-dependent 2D IR diagonal and off-diagonal signals show that intra- and intermolecular vibrational energy transfer processes occur on the picosecond timescale, where the latter is more efficient due to intermolecular hydrogen bonding interaction and through-space interaction.
Collapse
Affiliation(s)
- Xueqian Dong
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Sumin Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,School of Materials and Chemical Engineering , Xi'an Technological University , Xi'an 710021 , P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li-Zhu Wu
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Chen-Ho Tung
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
15
|
Wu Y, Yu P, Chen Y, Zhao J, Liu H, Li Y, Wang J. Intensified C≡C Stretching Vibrator and Its Potential Role in Monitoring Ultrafast Energy Transfer in 2D Carbon Material by Nonlinear Vibrational Spectroscopy. J Phys Chem Lett 2019; 10:1402-1410. [PMID: 30848918 DOI: 10.1021/acs.jpclett.9b00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, an intensity-enhanced C≡C stretching infrared (IR) absorption is observed in hexakis[(trimethylsilyl)ethynyl]benzene (HTEB), whose IR transition dipole magnitude becomes comparable to that of a typical C═O stretch, and the enhancement is believed to be due to a joint effect of π-π conjugation and hyperconjugation associated with a terminal trimethylsilyl group. Using dynamical time-dependent two-dimensional infrared (2D IR) spectroscopy, a picosecond intramolecular energy redistribution process is observed between two nondegenerate C≡C stretching modes, whose symmetry breaking is attributed to a noncovalent halogen-bonding interaction between HTEB and solvent CH2Cl2. The rigid structure of HTEB and limited structural dynamics are also inferred from the insignificant initial spectral diffusion value extracted from the 2D IR spectra. This work provides the first nonlinear infrared investigation of the conventionally weak C≡C stretch. The methods outlined are particularly important for detailed understanding of the structure-related processes such as vibrational energy transfer in novel C≡C species containing materials such as graphdiyne.
Collapse
Affiliation(s)
- Yanzhou Wu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Pengyun Yu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yanhuan Chen
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Juan Zhao
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Huibiao Liu
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yuliang Li
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jianping Wang
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
16
|
Massey SC, Ting PC, Yeh SH, Dahlberg PD, Sohail SH, Allodi MA, Martin EC, Kais S, Hunter CN, Engel GS. Orientational Dynamics of Transition Dipoles and Exciton Relaxation in LH2 from Ultrafast Two-Dimensional Anisotropy. J Phys Chem Lett 2019; 10:270-277. [PMID: 30599133 DOI: 10.1021/acs.jpclett.8b03223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-harvesting complexes in photosynthetic organisms display fast and efficient energy transfer dynamics, which depend critically on the electronic structure of the coupled chromophores within the complexes and their interactions with their environment. We present ultrafast anisotropy dynamics, resolved in both time and frequency, of the transmembrane light-harvesting complex LH2 from Rhodobacter sphaeroides in its native membrane environment using polarization-controlled two-dimensional electronic spectroscopy. Time-dependent anisotropy obtained from both experiment and modified Redfield simulation reveals an orientational preference for excited state absorption and an ultrafast equilibration within the B850 band in LH2. This ultrafast equilibration is favorable for subsequent energy transfer toward the reaction center. Our results also show a dynamic difference in excited state absorption anisotropy between the directly excited B850 population and the population that is initially excited at 800 nm, suggesting absorption from B850 states to higher-lying excited states following energy transfer from B850*. These results give insight into the ultrafast dynamics of bacterial light harvesting and the excited state energy landscape of LH2 in the native membrane environment.
Collapse
Affiliation(s)
- Sara C Massey
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Po-Chieh Ting
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Shu-Hao Yeh
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
- Qatar Environment and Energy Research Institute , Hamad Bin Khalifa University , Qatar Foundation, Doha , Qatar
| | - Peter D Dahlberg
- Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Sara H Sohail
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Marco A Allodi
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology , University of Sheffield , Firth Court, Western Bank, Sheffield S10 2TN , United Kingdom
| | - Sabre Kais
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology , University of Sheffield , Firth Court, Western Bank, Sheffield S10 2TN , United Kingdom
| | - Gregory S Engel
- Department of Chemistry, Institute for Biophysical Dynamics, and the James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
17
|
Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods. Top Curr Chem (Cham) 2018; 376:28. [DOI: 10.1007/s41061-018-0206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
|
18
|
Goetz S, Li D, Kolb V, Pflaum J, Brixner T. Coherent two-dimensional fluorescence micro-spectroscopy. OPTICS EXPRESS 2018; 26:3915-3925. [PMID: 29475248 DOI: 10.1364/oe.26.003915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/02/2018] [Indexed: 05/22/2023]
Abstract
We have developed coherent two-dimensional (2D) fluorescence micro-spectroscopy which probes the nonlinear optical response at surfaces via fluorescence detection with sub-micron spatial resolution. This enables the investigation of microscopic variations in heterogeneous systems. An LCD-based pulse shaper in 4f geometry is used to create collinear trains of 12-fs visible/NIR laser pulses in the focus of an NA = 1.4 immersion-oil microscope objective. We demonstrate the capabilities of the new method by presenting 2D spectra, analyzed via phase cycling, as a function of position of selected sub-micron regions from a laterally nanostructured polycrystalline thin film of fluorinated zinc phthalocyanine (F16ZnPc).
Collapse
|
19
|
Kraack JP, Sévery L, Tilley SD, Hamm P. Plasmonic Substrates Do Not Promote Vibrational Energy Transfer at Solid-Liquid Interfaces. J Phys Chem Lett 2018; 9:49-56. [PMID: 29235870 DOI: 10.1021/acs.jpclett.7b02855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intermolecular vibrational energy transfer in monolayers of isotopically mixed rhenium carbonyl complexes at solid-liquid interfaces is investigated with the help of ultrafast 2D Attenuated Total Reflectance Infrared (2D ATR IR) spectroscopy in dependence of plasmonic surface enhancement effects. Dielectric and plasmonic materials are used to demonstrate that plasmonic effects have no impact on the vibrational energy transfer rate in a regime of moderate IR surface enhancement (enhancement factors up to ca. 30). This result can be explained with the common image-dipole picture. The vibrational energy transfer rate thus can be used as a direct observable to determine intermolecular distances on surfaces, regardless of their plasmonic properties.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Laurent Sévery
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
20
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Kraack JP, Frei A, Alberto R, Hamm P. Ultrafast Vibrational Energy Transfer in Catalytic Monolayers at Solid-Liquid Interfaces. J Phys Chem Lett 2017; 8:2489-2495. [PMID: 28521090 DOI: 10.1021/acs.jpclett.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the ultrafast vibrational dynamics of monolayers from adsorbed rhenium-carbonyl CO2-reduction catalysts on a semiconductor surface (indium-tin-oxide (ITO)) with ultrafast two-dimensional attenuated total reflection infrared (2D ATR IR) spectroscopy. The complexes are partially equipped with isotope-labeled (13C) carbonyl ligands to generate two spectroscopically distinguishable forms of the molecules. Ultrafast vibrational energy transfer between the molecules is observed via the temporal evolution of cross-peaks between their symmetric carbonyl stretching vibrations. These contributions appear with time constant of 70 and 90 ps for downhill and uphill energy transfer, respectively. The energy transfer is thus markedly slower than any of the other intramolecular dynamics. From the transfer rate, an intermolecular distance of ∼4-5 Å can be estimated, close to the van der Waals distance of the molecular head groups. The present paper presents an important cornerstone for a better understanding of intermolecular coupling mechanisms of molecules on surfaces and explains the absence of similar features in earlier studies.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Angelo Frei
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|