1
|
Higuchi Y, Saleh MA, Anada T, Tanaka M, Hishida M. Rotational Dynamics of Water near Osmolytes by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:5008-5017. [PMID: 38728154 DOI: 10.1021/acs.jpcb.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The behavior of water molecules around organic molecules has attracted considerable attention as a crucial factor influencing the properties and functions of soft matter and biomolecules. Recently, it has been suggested that the change in protein stability upon the addition of small organic molecules (osmolytes) is dominated by the change in the water dynamics caused by the osmolyte, where the dynamics of not only the directly interacting water molecules but also the long-range hydration layer affect the protein stability. However, the relation between the long-range structure of hydration water in various solutions and the water dynamics remains unclear at the molecular level. We performed density-functional tight-binding molecular dynamics simulations to elucidate the varying rotational dynamics of water molecules in 15 osmolyte solutions. A positive correlation was observed between the rotational relaxation time and our proposed normalized parameter obtained by dividing the number of hydrogen bonds between water molecules by the number of nearest-neighbor water molecules. For the 15 osmolyte solutions, an increase or a decrease in the value of the normalized parameter for the second hydration shell tended to result in water molecules with slow and fast rotational dynamics, respectively, thus illustrating the importance of the second hydration shell for the rotational dynamics of water molecules. Our simulation results are anticipated to advance the current understanding of water dynamics around organic molecules and the long-range structure of water molecules.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Abu Saleh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
Wickramasinghe S, Hoehn A, Wetthasinghe ST, Lin H, Wang Q, Jakowski J, Rassolov V, Tang C, Garashchuk S. Theoretical Examination of the Hydroxide Transport in Cobaltocenium-Containing Polyelectrolytes. J Phys Chem B 2023; 127:10129-10141. [PMID: 37972315 DOI: 10.1021/acs.jpcb.3c04118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polymers incorporating cobaltocenium groups have received attention as promising components of anion-exchange membranes (AEMs), exhibiting a good balance of chemical stability and high ionic conductivity. In this work, we analyze the hydroxide diffusion in the presence of cobaltocenium cations in an aqueous environment based on the molecular dynamics of model systems confined in one dimension to mimic the AEM channels. In order to describe the proton hopping mechanism, the forces are obtained from the electronic structure computed at the density-functional tight-binding level. We find that the hydroxide diffusion depends on the channel size, modulation of the electrostatic interactions by the solvation shell, and its rearrangement ability. Hydroxide diffusion proceeds via both the vehicular and structural diffusion mechanisms with the latter playing a larger role at low diffusion coefficients. The highest diffusion coefficient is observed under moderate water densities (around half the density of liquid water) when there are enough water molecules to form the solvation shell, reducing the electrostatic interaction between ions, yet there is enough space for the water rearrangements during the proton hopping. The effects of cobaltocenium separation, orientation, chemical modifications, and the role of nuclear quantum effects are also discussed.
Collapse
Affiliation(s)
- Sachith Wickramasinghe
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alexandria Hoehn
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Shehani T Wetthasinghe
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Huina Lin
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Qi Wang
- Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vitaly Rassolov
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sophya Garashchuk
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
4
|
Peng L, Peng D, Gu FL, Yang W. Regularized Localized Molecular Orbitals in a Divide-and-Conquer Approach for Linear Scaling Calculations. J Chem Theory Comput 2022; 18:2975-2982. [PMID: 35416665 PMCID: PMC9972215 DOI: 10.1021/acs.jctc.2c00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Non-orthogonal localized molecular orbitals (NOLMOs) have been employed as building blocks for the divide-and-conquer (DC) linear scaling method. The NOLMOs are calculated from subsystems and used for constructing the density matrix (DM) of the entire system, instead of the subsystem DM in the original DC approach. Also, unlike the original DC method, the inverse electronic temperature parameter β is not needed anymore. Furthermore, a new regularized localization approach for NOLMOs has been developed, in which the localization cost function is a sum of the spatial spread function, as in the Boys method, and the kinetic energy, as a regularization measure to limit the oscillation of the NOLMOs. The optimal weight of the kinetic energy can be determined by optimization with analytical gradients. The resulting regularized NOLMOs have enhanced smoothness and better transferability because of reduced kinetic energies. Compared with the original DC, while NOLMO-DC has a similar computational linear scaling cost, the accuracy of NOLMO-DC is better by several orders of magnitude for large conjugated systems and by about 1 order of magnitude for other systems. The NOLMO-DC method is thus a promising development of the DC approach for linear scaling calculations.
Collapse
Affiliation(s)
- Liang Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Environment, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Daoling Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Environment, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Environment, South China Normal University, Guangzhou 510006, People’s Republic of China
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| |
Collapse
|
5
|
Sakti AW, Wahyudi ST, Ahmad F, Darmawan N, Hardhienata H, Alatas H. Effects of Salt Concentration on the Water and Ion Self-Diffusion Coefficients of a Model Aqueous Sodium-Ion Battery Electrolyte. J Phys Chem B 2022; 126:2256-2264. [PMID: 35271293 DOI: 10.1021/acs.jpcb.1c09619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aqueous sodium-ion battery is a promising alternative to the well-known lithium-ion battery owing to the large abundance of sodium ion resources. Although it is safer than the lithium-ion battery, the voltage window of the sodium-ion battery is narrower than that of the lithium-ion battery, thus limiting its practical implementation. Therefore, a highly concentrated electrolyte is required to address this issue. In the present work, the effect of the salt concentration on the transport properties of water molecules is investigated via theoretical analyses at the quantum mechanical level. A molecular dynamics simulation at the quantum mechanical level revealed that as the salt concentration increases, the ion-water interactions became stronger, leading to a lower diffusivity and a lower electronic band gap. These imply that the superconcentrated aqueous-based electrolytes have high potentials for the sodium-ion battery applications.
Collapse
Affiliation(s)
- Aditya Wibawa Sakti
- Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Jakarta 12220, Indonesia.,Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Setyanto Tri Wahyudi
- Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia.,Biophysics Division, Department of Physics, IPB University, Bogor 16680, Indonesia
| | - Faozan Ahmad
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Noviyan Darmawan
- Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia.,Inorganic Chemistry Division, Department of Chemistry, IPB University, Bogor 16680, Indonesia
| | - Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Husin Alatas
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| |
Collapse
|
6
|
Higuchi Y, Asano Y, Kuwahara T, Hishida M. Rotational Dynamics of Water at the Phospholipid Bilayer Depending on the Head Groups Studied by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5329-5338. [PMID: 33881324 DOI: 10.1021/acs.langmuir.1c00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydration states are a crucial factor that affect the self-assembly and properties of soft materials and biomolecules. Although previous experiments have revealed that the hydration state strongly depends on the chemical structure of lipid molecules, the mechanisms at the molecular level remain unknown. Classical and density-functional tight-binding (DFTB) molecular dynamics (MD) simulations are employed to determine the mechanisms underlying dissimilar water dynamics between lipid membranes with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) head groups. The classical MD simulation shows that rotational relaxations of water are faster on the PE lipid than on the PC lipid, which is consistent with a previous experimental study using terahertz spectroscopy. Furthermore, DFTB-MD simulation of N(CH3)4+ and NH4+ ions, which correspond to the different head groups in PC and PE, respectively, shows qualitative agreement with the classical MD simulation. Remarkably, the PE lipids and the NH4+ ions break hydrogen bonds between water molecules in the secondary hydration shell. In contrast, the PC lipids and the N(CH3)4+ ions bind water molecules weakly in both the primary and secondary hydration shells and increase hydrogen bonds between water. Our atomistic simulations show that these changes in the hydrogen-bond network of water molecules cause the different rotational relaxation of water molecules between the two lipids.
Collapse
Affiliation(s)
- Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yuta Asano
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takuya Kuwahara
- MicroTribology Center μTC, Fraunhofer IWM, Wöhlerstraße 11, Freiburg 79108, Germany
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
7
|
Uratani H, Yoshikawa T, Nakai H. Trajectory Surface Hopping Approach to Condensed-Phase Nonradiative Relaxation Dynamics Using Divide-and-Conquer Spin-Flip Time-Dependent Density-Functional Tight Binding. J Chem Theory Comput 2021; 17:1290-1300. [PMID: 33577323 DOI: 10.1021/acs.jctc.0c01155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonradiative relaxation of excited molecules is central to many crucial issues in photochemistry. Condensed phases are typical contexts in which such problems are considered, and the nonradiative relaxation dynamics are expected to be significantly affected by interactions with the environment, for example, a solvent. We developed a nonadiabatic molecular dynamics simulation technique that can treat the nonradiative relaxation and explicitly include the environment in the calculations without a heavy computational burden. Specifically, we combined trajectory surface hopping with Tully's fewest-switches algorithm, a tight-binding approximated version of spin-flip time-dependent density-functional theory, and divide-and-conquer (DC) spatial fragmentation scheme. Numerical results showed that this method can treat systems with thousands of atoms within reasonable computational resources, and the error arising from DC fragmentation is negligibly small. Using this method, we obtained molecular insights into the solvent dependence of the photoexcited-state dynamics of trans-azobenzene, which demonstrate the importance of the environment for condensed-phase nonradiative relaxation.
Collapse
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
8
|
Wang Q, Steinbock O. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2485-2493. [PMID: 33555186 DOI: 10.1021/acs.langmuir.0c03548] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thin-walled tubes that classically form when metal salts react with sodium silicate solution are known as chemical gardens. They share similarities with the porous, catalytic materials in hydrothermal vent chimneys, and both structures are exposed to steep pH gradients that, combined with thermal factors, might have provided the free energy for prebiotic chemistry on early Earth. We report temperature effects on the shape, composition, and opacity of chemical gardens. Tubes grown at high temperature are more opaque, indicating changes to the membrane structure or thickness. To study this dependence, we developed a temperature-controlled microfluidic device, which allows the formation of analogous membranes at the interface of two coflowing reactant solutions. For the case of Ni(OH)2, membranes thicken according to a diffusion-controlled mechanism. In the studied range of 10-40 °C, the effective diffusion coefficient is independent of temperature. This suggests that counteracting processes are at play (including an increased solubility) and that the opacity of chemical garden tubes arises from changes in internal morphology. The latter could be linked to experimentally observed dendritic structures within the membranes.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
9
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
10
|
Shi H, Gong LD, Liu C, Lu LN, Yang ZZ. ABEEM/MM OH - Models for OH -(H 2O) n Clusters and Aqueous OH -: Structures, Charge Distributions, and Binding Energies. J Phys Chem A 2020; 124:5963-5978. [PMID: 32520555 DOI: 10.1021/acs.jpca.0c03941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), two fluctuating charge models of OH--water system were proposed. The difference between these two models is whether there is charge transfer between OH- and its first-shell water molecules. The structures, charge distributions, charge transfer, and binding energies of the OH-(H2O)n (n = 1-8, 10, 15, 23) clusters were studied by these two ABEEM/MM models, the OPLS/AA force field, the OPLS-SMOOTH/AA force field, and the QM methods. The results demonstrate that two ABEEM/MM models can search out all stable structures just as the QM methods, and the structures and charge distributions agree well with those from the QM calculations. The structures, the charge transfer, and the strength of hydrogen bonds in the first hydration shell are closely related to the coordination number of OH-. Molecular dynamics simulations on the aqueous OH- solution are performed at 298 and 278 K using ABEEM/MM-I model. The MD results show that the populations of three-, four-, and five-coordinated OH- are 29.6%, 67.1%, and 3.4% at 298 K, respectively, and those of two-, three-, four-, and five-coordinated OH- are 10.8%, 44.9%, 39.2%, and 4.9% at 278 K, respectively; the average hydrogen bond lengths and the hydrogen bond angle in the first shell increase with the temperature decreasing.
Collapse
Affiliation(s)
- Hua Shi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China.,School of Marine Science and Environment, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Li-Nan Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, People's Republic of China
| |
Collapse
|
11
|
Uratani H, Nakai H. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations. J Chem Phys 2020; 152:224109. [DOI: 10.1063/5.0006831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
12
|
Nishimura Y, Nakai H. Hierarchical parallelization of divide‐and‐conquer density functional tight‐binding molecular dynamics and metadynamics simulations. J Comput Chem 2020; 41:1759-1772. [DOI: 10.1002/jcc.26217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering Waseda University Tokyo Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering, Waseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Kyoto Japan
| |
Collapse
|
13
|
Inamori M, Yoshikawa T, Ikabata Y, Nishimura Y, Nakai H. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. J Comput Chem 2020; 41:1538-1548. [DOI: 10.1002/jcc.26197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Mayu Inamori
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto Japan
| |
Collapse
|
14
|
Komoto N, Yoshikawa T, Nishimura Y, Nakai H. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. J Chem Theory Comput 2020; 16:2369-2378. [DOI: 10.1021/acs.jctc.9b01268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Komoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
15
|
Sakti AW, Nishimura Y, Nakai H. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aditya W. Sakti
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
| | - Hiromi Nakai
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| |
Collapse
|
16
|
Chou CP, Sakti AW, Nishimura Y, Nakai H. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery. CHEM REC 2019; 19:746-757. [PMID: 30462370 DOI: 10.1002/tcr.201800141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/24/2023]
Abstract
The density-functional tight-binding (DFTB) method is one of the useful quantum chemical methods, which provides a good balance between accuracy and computational efficiency. In this account, we reviewed the basis of the DFTB method, the linear-scaling divide-and-conquer (DC) technique, as well as the parameterization process. We also provide some refinement, modifications, and extension of the existing parameters that can be applicable for lithium-ion battery systems. The diffusion constants of common electrolyte molecules and LiTFSA salt in solution have been estimated using DC-DFTB molecular dynamics simulation with our new parameters. The resulting diffusion constants have good agreement to the experimental diffusion constants.
Collapse
Affiliation(s)
- Chien-Pin Chou
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555, Japan
| | - Aditya Wibawa Sakti
- Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555, Japan.,Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Enigineering, Waseda University, Tokyo, 169-8555, Japan
| |
Collapse
|
17
|
Komoto N, Yoshikawa T, Ono J, Nishimura Y, Nakai H. Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method. J Chem Theory Comput 2019; 15:1719-1727. [PMID: 30673283 DOI: 10.1021/acs.jctc.8b01214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the divide-and-conquer (DC) method was extended to time-dependent density functional tight-binding (TDDFTB) theory to enable excited-state calculations of large systems and is denoted by DC-TDDFTB. The efficient diagonalization algorithms of TDDFTB and DC-TDDFTB methods were implemented into our in-house program. Test calculations of polyethylene aldehyde and p-coumaric acid, a pigment in photoactive yellow protein, in water demonstrate the high accuracy and efficiency of the developed DC-TDDFTB method. Furthermore, the (TD)DFTB metadynamics simulations of acridinium in the ground and excited states give reasonable p Ka values compared with the corresponding experimental values.
Collapse
Affiliation(s)
- Nana Komoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Takeshi Yoshikawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Junichi Ono
- Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan.,Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| |
Collapse
|
18
|
Nishimura Y, Nakai H. D
cdftbmd
: Divide‐and‐Conquer Density Functional Tight‐Binding Program for Huge‐System Quantum Mechanical Molecular Dynamics Simulations. J Comput Chem 2019; 40:1538-1549. [DOI: 10.1002/jcc.25804] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
- Department of Chemistry and BiochemistrySchool of Advanced Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
- ESICB, Kyoto University Kyotodaigaku‐Katsura, Kyoto 615‐8520 Japan
| |
Collapse
|
19
|
Lee KH, Schnupf U, Sumpter BG, Irle S. Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS OMEGA 2018; 3:16899-16915. [PMID: 31458314 PMCID: PMC6643604 DOI: 10.1021/acsomega.8b02213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 05/12/2023]
Abstract
Density functional theory (DFT) is a widely used methodology for the computation of molecular and electronic structure, and we confirm that B3LYP and the high-level ab initio G3B3 method are in excellent agreement for the lowest-energy isomers of the 16 glucose epimers. Density-functional tight-binding (DFTB) is an approximate version of DFT with typically comparable accuracy that is 2 to 3 orders of magnitude faster, therefore generally very suitable for processing large numbers of complex structures. Conformational isomerism in sugars is well known to give rise to a large number of isomer structures. On the basis of a comprehensive study of glucose epimers in vacuo and aqueous solution, we found that the performance of DFTB is on par to B3LYP in terms of geometrical parameters excluding hydrogen bonds and isomer energies. However, DFTB underestimates both hydrogen bonding interactions as well as torsional barriers associated with rotations of the hydroxy groups, resulting in a counterintuitive overemphasis of hydrogen bonding in both gas phase as well as in water. Although the associated root mean squared deviation from B3LYP within epimer isomer groups is only on the order of 1 kcal/mol, this deviation affects the correct assignment of major isomer ordering, which span less than 10 kcal/mol. Both second- as well as third-order DFTB methods are exhibiting similar deviations from B3LYP. Even after the inclusion of empirical dispersion corrections in vacuum, these deviations remain for a large majority of isomer energies and geometries when compared to dispersion-corrected B3LYP.
Collapse
Affiliation(s)
- Ka Hung Lee
- Department
of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Bredesen
Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Udo Schnupf
- Department
of Chemistry and Biochemistry, Bradley University, Peoria, Illinois 61625, United States
- E-mail: (U.S.)
| | - Bobby G. Sumpter
- Computational Sciences and Engineering Division &
Chemical Sciences
Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan Irle
- Department
of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Computational Sciences and Engineering Division &
Chemical Sciences
Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- E-mail: (S.I.)
| |
Collapse
|
20
|
Simon A, Rapacioli M, Michoulier E, Zheng L, Korchagina K, Cuny J. Contribution of the density-functional-based tight-binding scheme to the description of water clusters: methods, applications and extension to bulk systems. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1554903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A. Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - M. Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - E. Michoulier
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - L. Zheng
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - K. Korchagina
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| | - J. Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse and CNRS, Toulouse, France
| |
Collapse
|
21
|
Huran AW, Steigemann C, Frauenheim T, Aradi B, Marques MAL. Efficient Automatized Density-Functional Tight-Binding Parametrizations: Application to Group IV Elements. J Chem Theory Comput 2018; 14:2947-2954. [DOI: 10.1021/acs.jctc.7b01269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad W. Huran
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Conrad Steigemann
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | | | - Bálint Aradi
- BCCMS, University of Bremen, 28359 Bremen, Germany
| | - Miguel A. L. Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Okoshi M, Chou CP, Nakai H. Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries. J Phys Chem B 2018; 122:2600-2609. [DOI: 10.1021/acs.jpcb.7b10589] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masaki Okoshi
- Department of Chemistry and Biochemistry, Waseda University, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto 615-8245, Japan
| | - Chien-Pin Chou
- Research Institute for Science and Engineering (RISE), Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, Waseda University, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyoto 615-8245, Japan
- Research Institute for Science and Engineering (RISE), Waseda University, Tokyo 169-8555, Japan
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
23
|
Sakti AW, Nishimura Y, Chou CP, Nakai H. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases. J Phys Chem A 2017; 122:33-40. [DOI: 10.1021/acs.jpca.7b10664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | - Hiromi Nakai
- CREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan
- ESICB, Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
24
|
Sakti AW, Nishimura Y, Nakai H. Rigorous pKa Estimation of Amine Species Using Density-Functional Tight-Binding-Based Metadynamics Simulations. J Chem Theory Comput 2017; 14:351-356. [DOI: 10.1021/acs.jctc.7b00855] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aditya Wibawa Sakti
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Research
Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Research
Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Core
Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
25
|
Sakti AW, Nishimura Y, Sato H, Nakai H. Divide-and-Conquer Density-Functional Tight-Binding Molecular Dynamics Study on the Formation of Carbamate Ions during CO2Chemical Absorption in Aqueous Amine Solution. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aditya Wibawa Sakti
- Department of Chemistry and Biochemistry, School of Advance Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555
| | - Yoshifumi Nishimura
- Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555
| | - Hiroshi Sato
- Research Laboratory, IHI Corporation, Yokohama, Kanagawa 235-8501
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advance Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555
- Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075
- Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520
| |
Collapse
|
26
|
Nishimura Y, Nakai H. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations. J Comput Chem 2017; 39:105-116. [DOI: 10.1002/jcc.25086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yoshifumi Nishimura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
| | - Hiromi Nakai
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho; Kawaguchi 332-0012 Japan
- ESICB, Kyoto University, Kyotodaigaku-Katsura; Kyoto 615-8520 Japan
| |
Collapse
|
27
|
Yuan D, Li Y, Ni Z, Pulay P, Li W, Li S. Benchmark Relative Energies for Large Water Clusters with the Generalized Energy-Based Fragmentation Method. J Chem Theory Comput 2017; 13:2696-2704. [DOI: 10.1021/acs.jctc.7b00284] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dandan Yuan
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of Ministry of Education, Institute of Theoretical and Computational
Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Yunzhi Li
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of Ministry of Education, Institute of Theoretical and Computational
Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Zhigang Ni
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of Ministry of Education, Institute of Theoretical and Computational
Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Peter Pulay
- Department
of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Wei Li
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of Ministry of Education, Institute of Theoretical and Computational
Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Shuhua Li
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of Ministry of Education, Institute of Theoretical and Computational
Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|