1
|
Diomede L, Conz A, Mosconi M, Stoilova T, Paloni M, Salvalaglio M, Cagnotto A, Colombo L, Catania M, Di Fede G, Tagliavini F, Salmona M. The AβA2V paradigm: From molecular insights to therapeutic strategies in Alzheimer's disease and primary tauopathies. Pharmacol Res 2024; 211:107563. [PMID: 39733844 DOI: 10.1016/j.phrs.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Alzheimer's disease, the leading cause of dementia globally, represents an unresolved clinical challenge due to its complex pathogenesis and the absence of effective treatments. Considering the multifactorial etiology of the disease, mainly characterized by the accumulation of amyloid β plaques and neurofibrillary tangles of tau protein, we discuss the A673V mutation in the gene coding for the amyloid precursor protein, which is associated with the familial form of Alzheimer's disease in a homozygous state. The mutation offers new insights into the molecular mechanisms of the disease, particularly regarding the contrasting roles of the A2V and A2T mutations in amyloid β peptide aggregation and toxicity. This review aims to describe relevant studies on A2V-mutated variants of the amyloid β peptide, revealing a protective effect against amyloid-β and tau pathology. Notably, special attention is given to the development of the peptide Aβ1-6A2V(D), which shows significant neuroprotective activity through inhibition of the assembly of amyloid β into amyloid fibrils. The therapeutic potential of this peptide emerges from its ability to reduce amyloid β-induced toxicity, with promising results from studies in human neuroblastoma cells and transgenic animal models.
Collapse
Affiliation(s)
- Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| | - Andrea Conz
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Michele Mosconi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Tatiana Stoilova
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Matteo Paloni
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Marcella Catania
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Fabrizio Tagliavini
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
2
|
Cehlar O, Njemoga S, Horvath M, Cizmazia E, Bednarikova Z, Barrera EE. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer's Disease, Parkinson's Disease and Prionopathies. Int J Mol Sci 2024; 25:13049. [PMID: 39684761 DOI: 10.3390/ijms252313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies.
Collapse
Affiliation(s)
- Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Marian Horvath
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Erik Cizmazia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Exequiel E Barrera
- Instituto de Histología y Embriología (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
| |
Collapse
|
3
|
Jana AK, Keskin R, Yaşar F. Molecular Insight into the Effect of HIV-TAT Protein on Amyloid-β Peptides. ACS OMEGA 2024; 9:27480-27491. [PMID: 38947850 PMCID: PMC11209880 DOI: 10.1021/acsomega.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Increased deposition of amyloid-β (Aβ) plaques in the brain is a frequent pathological feature observed in human immunodeficiency virus (HIV)-positive patients. Emerging evidence indicates that HIV regulatory proteins, particularly the transactivator of transcription (TAT) protein, could interact with Aβ peptide, accelerating the formation of Aβ plaques in the brain and potentially contributing to the onset of Alzheimer's disease in individuals with HIV infection. Nevertheless, the molecular mechanisms underlying these processes remain unclear. In the present study, we have used long all-atom molecular dynamics simulations to probe the direct interactions between the TAT protein and Aβ peptide at the molecular level. Sampling over 28.0 μs, our simulations show that TAT protein induces a shift in the Aβ monomer ensemble toward elongated conformations, exposing aggregation-prone regions on the surface and thereby inducing subsequent aggregation. TAT protein also appears to enhance the stability of preformed Aβ fibrils, while increasing the β-sheet content within these fibrils. Our atomistically detailed simulations qualitatively agree with previous in vitro and in vivo studies. Importantly, our simulations identify key interactions between Aβ and the TAT protein that drive the Aβ aggregation process and stabilize the preformed Aβ aggregates, which are particularly challenging to obtain through current experimental techniques.
Collapse
Affiliation(s)
- Asis K. Jana
- Department
of Microbiology and Biotechnology, Sister
Nivedita University, Kolkata 700156, India
| | - Recep Keskin
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| | - Fatih Yaşar
- Department
of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye
| |
Collapse
|
4
|
Nguyen PH, Derreumaux P. Insights into the Mixture of Aβ24 and Aβ42 Peptides from Atomistic Simulations. J Phys Chem B 2022; 126:10689-10696. [PMID: 36493347 DOI: 10.1021/acs.jpcb.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) oligomers play a central role in Alzheimer's disease (AD). Plaques of AD patients consist of Aβ40 and Aβ42 peptides and truncated Aβ peptides. The Aβ24 peptide, identified in human AD brains, was found to impair Aβ42 clearance through the brain-blood barrier. The Aβ24 peptide was also shown to reduce Aβ42 aggregation kinetics in pure buffer, but the underlying mechanism is unknown at atomistic level. In this study, we explored the conformational ensemble of the equimolar mixture of Aβ24 and Aβ42 by replica exchange molecular dynamics simulations and compared it to our previous results on the pure Aβ42 dimer. Our simulations demonstrate that the truncation at residue 24 changes the secondary, tertiary, and quaternary structures of the dimer, offering an explanation of the slower aggregation kinetics of the mixture.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
5
|
Catania M, Colombo L, Sorrentino S, Cagnotto A, Lucchetti J, Barbagallo MC, Vannetiello I, Vecchi ER, Favagrossa M, Costanza M, Giaccone G, Salmona M, Tagliavini F, Di Fede G. A novel bio-inspired strategy to prevent amyloidogenesis and synaptic damage in Alzheimer's disease. Mol Psychiatry 2022; 27:5227-5234. [PMID: 36028569 PMCID: PMC9763104 DOI: 10.1038/s41380-022-01745-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects millions of people worldwide. AD pathogenesis is intricate. It primarily involves two main molecular players-amyloid-β (Aβ) and tau-which actually have an intrinsic trend to generate molecular assemblies that are toxic to neurons. Incomplete knowledge of the molecular mechanisms inducing the onset and sustaining the progression of the disease, as well as the lack of valid models to fully recapitulate the pathogenesis of human disease, have until now hampered the development of a successful therapy for AD. The overall experience with clinical trials with a number of potential drugs-including the recent outcomes of studies with monoclonal antibodies against Aβ-seems to indicate that Aβ-targeting is not effective if it is not accompanied by an efficient challenge of Aβ neurotoxic properties. We took advantage from the discovery of a naturally-occurring variant of Aβ (AβA2V) that has anti-amyloidogenic properties, and designed a novel bio-inspired strategy for AD based on the intranasal delivery of a six-mer peptide (Aβ1-6A2V) retaining the anti-amyloidogenic abilities of the full-length AβA2V variant. This approach turned out to be effective in preventing the aggregation of wild type Aβ and averting the synaptic damage associated with amyloidogenesis in a mouse model of AD. The results of our preclinical studies inspired by a protective model already existing in nature, that is the human heterozygous AβA2V carriers which seem to be protected from AD, open the way to an unprecedented and promising approach for the prevention of the disease in humans.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Stefano Sorrentino
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria Chiara Barbagallo
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Ilaria Vannetiello
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Elena Rita Vecchi
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Monica Favagrossa
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giorgio Giaccone
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Fabrizio Tagliavini
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Di Fede
- Neurology V - Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
6
|
Lu Y, Salsbury F, Derreumaux P. Impact of A2T and D23N mutations on C99 homodimer conformations. J Chem Phys 2022; 157:085102. [DOI: 10.1063/5.0101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteolytic cleavage of C99 by γ-secretase is the last step in the production of amyloid-β (Aβ) peptides. Previous studies have shown that membrane lipid composition, cholesterol concentration, and mutation in the transmembrane helix modified the structures and fluctuations of C99. In this study, we performed atomistic molecular dynamics simulations of the homodimer of the 55-residue congener of the C-terminal domain of the amyloid protein precursor, C99(1-55), in a POPC-cholesterol lipid bilayer, and we compared the conformational ensemble of WT sequence to those of the A2T and D23N variants. These mutations are particularly interesting as the protective Alzheimer's disease (AD) A2T mutation is known to decrease Aβ production, whereas the early onset AD D23N mutation does not affect Aβ production. We found noticeable differences in the structural ensembles of the three sequences. In particular, A2T varies from both WT and D23N by having long-range effects on the population of the extracellular justamembrane helix, the interface between the G29xxx-G33xxx-G37 motifs and the fluctuations of the transmembrane helical topologies.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics, Xidian University, China
| | | | | |
Collapse
|
7
|
Constructing conformational library for amyloid-β42 dimers as the smallest toxic oligomers using two CHARMM force fields. J Mol Graph Model 2022; 115:108207. [DOI: 10.1016/j.jmgm.2022.108207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
|
8
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
9
|
Nguyen TH, Nguyen PH, Ngo ST, Derreumaux P. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022; 27:molecules27041395. [PMID: 35209177 PMCID: PMC8879133 DOI: 10.3390/molecules27041395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease displays aggregates of the amyloid-beta (Aβ) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aβ oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aβ42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aβ42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17–F20 and L30–M35 with a non-negligible contribution of loop residues D22–K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aβ42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer’s disease.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam; (T.H.N.); (S.T.N.)
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Tachi Y, Itoh SG, Okumura H. Molecular dynamics simulations of amyloid-β peptides in heterogeneous environments. Biophys Physicobiol 2022; 19:1-18. [PMID: 35666692 PMCID: PMC9135617 DOI: 10.2142/biophysico.bppb-v19.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yuhei Tachi
- Department of Physics, Graduate school of Science, Nagoya University
| | - Satoru G. Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences
| |
Collapse
|
11
|
Nguyen PH, Tufféry P, Derreumaux P. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods Mol Biol 2022; 2405:95-113. [PMID: 35298810 DOI: 10.1007/978-1-0716-1855-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid fibril formation is an intrinsic property of short peptides, non-disease proteins, and proteins associated with neurodegenerative diseases. Aggregates of the Aβ and tau proteins, the α-synuclein protein, and the prion protein are observed in the brain of Alzheimer's, Parkinson's, and prion disease patients, respectively. Due to the transient short-range and long-range interactions of all species and their high aggregation propensities, the conformational ensemble of these devastating proteins, the exception being for the monomeric prion protein, remains elusive by standard structural biology methods in bulk solution and in lipid membranes. To overcome these limitations, an increasing number of simulations using different sampling methods and protein models have been performed. In this chapter, we first review our main contributions to the field of amyloid protein simulations aimed at understanding the early aggregation steps of short linear amyloid peptides, the conformational ensemble of the Aβ40/42 dimers in bulk solution, and the stability of Aβ aggregates in lipid membrane models. Then we focus on our studies on the interactions of amyloid peptides/inhibitors to prevent aggregation, and long amyloid sequences, including new results on a monomeric tau construct.
Collapse
Affiliation(s)
- Phuong Hoang Nguyen
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
12
|
Manganese promotes α-synuclein amyloid aggregation through the induction of protein phase transition. J Biol Chem 2021; 298:101469. [PMID: 34871547 PMCID: PMC8717548 DOI: 10.1016/j.jbc.2021.101469] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/31/2023] Open
Abstract
α-Synuclein (α-Syn) is the major protein component of Lewy bodies, a key pathological feature of Parkinson’s disease (PD). The manganese ion Mn2+ has been identified as an environmental risk factor of PD. However, it remains unclear how Mn2+ regulates α-Syn aggregation. Here, we discovered that Mn2+accelerates α-Syn amyloid aggregation through the regulation of protein phase separation. We found that Mn2+ not only promotes α-Syn liquid-to-solid phase transition but also directly induces soluble α-Syn monomers to form solid-like condensates. Interestingly, the lipid membrane is integrated into condensates during Mn2+-induced α-Syn phase transition; however, the preformed Mn2+/α-syn condensates can only recruit lipids to the surface of condensates. In addition, this phase transition can largely facilitate α-Syn amyloid aggregation. Although the Mn2+-induced condensates do not fuse, our results demonstrated that they could recruit soluble α-Syn monomers into the existing condensates. Furthermore, we observed that a manganese chelator reverses Mn2+-induced α-Syn aggregation during the phase transition stage. However, after maturation, α-Syn aggregation becomes irreversible. These findings demonstrate that Mn2+ facilitates α-Syn phase transition to accelerate the formation of α-Syn aggregates and provide new insights for targeting α-Syn phase separation in PD treatment.
Collapse
|
13
|
Zhao H, Huang X, Tong Z. Formaldehyde-Crosslinked Nontoxic Aβ Monomers to Form Toxic Aβ Dimers and Aggregates: Pathogenicity and Therapeutic Perspectives. ChemMedChem 2021; 16:3376-3390. [PMID: 34396700 DOI: 10.1002/cmdc.202100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques in the brain. However, medicines targeting amyloid-beta (Aβ) have not achieved the expected clinical effects. This review focuses on the formation mechanism of the Aβ dimer (the basic unit of oligomers and fibrils) and its tremendous potential as a drug target. Recently, age-associated formaldehyde and Aβ-derived formaldehyde have been found to crosslink the nontoxic Aβ monomer to form the toxic dimers, oligomers and fibrils. Particularly, Aβ-induced formaldehyde accumulation and formaldehyde-promoted Aβ aggregation form a vicious cycle. Subsequently, formaldehyde initiates Aβ toxicity in both the early-and late-onset AD. These facts also explain why AD drugs targeting only Aβ do not have the desired therapeutic effects. Development of the nanoparticle-based medicines targeting both formaldehyde and Aβ dimer is a promising strategy for improving the drug efficacy by penetrating blood-brain barrier and extracellular space into the cortical neurons in AD patients.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Wenzhou Medical University Affiliated Hospital 3, Department of Neurology, Wenzhou, 325200, China
| | - Zhiqian Tong
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
14
|
Okumura H, Itoh SG, Nakamura K, Kawasaki T. Role of Water Molecules and Helix Structure Stabilization in the Laser-Induced Disruption of Amyloid Fibrils Observed by Nonequilibrium Molecular Dynamics Simulations. J Phys Chem B 2021; 125:4964-4976. [PMID: 33961416 DOI: 10.1021/acs.jpcb.0c11491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Water plays a crucial role in the formation and destruction of biomolecular structures. The mechanism for destroying biomolecular structures was thought to be an active breaking of hydrogen bonds by water molecules. However, using nonequilibrium molecular dynamics simulations, in which an amyloid-β amyloid fibril was destroyed via infrared free-electron laser (IR-FEL) irradiation, we discovered a new mechanism, in which water molecules disrupt protein aggregates. The intermolecular hydrogen bonds formed by C═O and N-H in the fibril are broken at each pulse of laser irradiation. These bonds spontaneously re-form after the irradiation in many cases. However, when a water molecule happens to enter the gap between C═O and N-H, it inhibits the re-formation of the hydrogen bonds. Such sites become defects in the regularly aligned hydrogen bonds, from which all hydrogen bonds in the intermolecular β-sheet are broken as the fraying spreads. This role of water molecules is entirely different from other known mechanisms. This new mechanism can explain the recent experiments showing that the amyloid fibrils are not destroyed by laser irradiation under dry conditions. Additionally, we found that helix structures form more after the amyloid disruption; this is because the resonance frequency is different in a helix structure. Our findings provide a theoretical basis for the application of IR-FEL to the future treatment of amyloidosis.
Collapse
Affiliation(s)
- Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma 371-8514, Japan
| | - Takayasu Kawasaki
- IR Free Electron Laser Research Center, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
15
|
Yamauchi M, Okumura H. Dimerization of α-Synuclein Fragments Studied by Isothermal-Isobaric Replica-Permutation Molecular Dynamics Simulation. J Chem Inf Model 2021; 61:1307-1321. [PMID: 33625841 DOI: 10.1021/acs.jcim.0c01056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aggregates and fibrils of intrinsically disordered α-synuclein are associated with Parkinson's disease. Within a non-amyloid β component (NAC) spanning from the 61st to the 95th residue of α-synuclein, an 11-residue segment called NACore (68GAVVTGVTAVA78) is an essential region for both fibril formation and cytotoxicity. Although NACore peptides alone are known to form aggregates and amyloid fibrils, the mechanisms of aggregation and fibrillation remain unknown. This study investigated the dimerization process of NACore peptides as the initial stage of the aggregation and fibrillation processes. We performed an isothermal-isobaric replica-permutation molecular dynamics simulation, which is one of the efficient sampling methods, for the two NACore peptides in explicit water over 96 μs. The simulation succeeded in sampling a variety of dimer structures. An analysis of secondary structure revealed that most of the NACore dimers form intermolecular β-bridges. In particular, more antiparallel β-bridges were observed than parallel β-bridges. We also found that intramolecular secondary structures such as α-helix and antiparallel β-bridge are stabilized in the pre-dimer state. However, we identified that the intermolecular β-bridges tend to form directly between residues with no specific structure rather than via the intramolecular β-bridges. This is because the NACore peptides still have a low propensity to form the intramolecular secondary structures even though they are stabilized in the pre-dimer state.
Collapse
Affiliation(s)
- Masataka Yamauchi
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies(SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 420] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
17
|
Promotion and Inhibition of Amyloid-β Peptide Aggregation: Molecular Dynamics Studies. Int J Mol Sci 2021; 22:ijms22041859. [PMID: 33668406 PMCID: PMC7918115 DOI: 10.3390/ijms22041859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
Aggregates of amyloid-β (Aβ) peptides are known to be related to Alzheimer’s disease. Their aggregation is enhanced at hydrophilic–hydrophobic interfaces, such as a cell membrane surface and air-water interface, and is inhibited by polyphenols, such as myricetin and rosmarinic acid. We review molecular dynamics (MD) simulation approaches of a full-length Aβ peptide, Aβ40, and Aβ(16–22) fragments in these environments. Since these peptides have both hydrophilic and hydrophobic amino acid residues, they tend to exist at the interfaces. The high concentration of the peptides accelerates the aggregation there. In addition, Aβ40 forms a β-hairpin structure, and this structure accelerates the aggregation. We also describe the inhibition mechanism of the Aβ(16–22) aggregation by polyphenols. The aggregation of Aβ(16–22) fragments is caused mainly by the electrostatic attraction between charged amino acid residues known as Lys16 and Glu22. Since polyphenols form hydrogen bonds between their hydroxy and carboxyl groups and these charged amino acid residues, they inhibit the aggregation.
Collapse
|
18
|
Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264:106421. [PMID: 32623047 DOI: 10.1016/j.bpc.2020.106421] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) play many biological roles in the human proteome ranging from vesicular transport, signal transduction to neurodegenerative diseases. The Aβ and tau proteins, and the α-synuclein protein, key players in Alzheimer's and Parkinson's diseases, respectively are fully disordered at the monomer level. The structural heterogeneity of the monomeric and oligomeric states and the high self-assembly propensity of these three IDPs have precluded experimental structural determination. Simulations have been used to determine the atomic structures of these IDPs. In this article, we review recent computer models to capture the equilibrium ensemble of Aβ, tau and α-synuclein proteins at different association steps in aqueous solution and present new results of the PEP-FOLD framework on α-synuclein monomer.
Collapse
|
19
|
Symmetry-breaking transitions in the early steps of protein self-assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:175-191. [PMID: 32123956 DOI: 10.1007/s00249-020-01424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
Protein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a heterogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer's disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating distribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1-40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations.
Collapse
|
20
|
Ngo ST, Nguyen PH, Derreumaux P. Impact of A2T and D23N Mutations on Tetrameric Aβ42 Barrel within a Dipalmitoylphosphatidylcholine Lipid Bilayer Membrane by Replica Exchange Molecular Dynamics. J Phys Chem B 2020; 124:1175-1182. [DOI: 10.1021/acs.jpcb.9b11881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
| | - Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 33000, Vietnam
| |
Collapse
|
21
|
Jakubowski J, Orr AA, Le DA, Tamamis P. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2020; 60:289-305. [PMID: 31809572 PMCID: PMC7732148 DOI: 10.1021/acs.jcim.9b00561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/24/2022]
Abstract
The aggregation of amyloid-β (Aβ) peptides into senile plaques is a hallmark of Alzheimer's disease (AD) and is hypothesized to be the primary cause of AD related neurodegeneration. Previous studies have shown the ability of curcumin to both inhibit the aggregation of Aβ peptides into oligomers or fibrils and reduce amyloids in vivo. Despite the promise of curcumin and its derivatives to serve as diagnostic, preventative, and potentially therapeutic AD molecules, the mechanism by which curcumin and its derivatives bind to and inhibit Aβ fibrils' formation remains elusive. Here, we investigated curcumin and a set of curcumin derivatives in complex with a hexamer peptide model of the Aβ1-42 fibril using nearly exhaustive docking, followed by multi-ns molecular dynamics simulations, to provide atomistic-detail insights into the molecules' binding and inhibitory properties. In the vast majority of the simulations, curcumin and its derivatives remain firmly bound in complex with the fibril through primarily three different principle binding modes, in which the molecules interact with residue domain 17LVFFA21, in line with previous experiments. In a small subset of these simulations, the molecules partly dissociate the outermost peptide of the Aβ1-42 fibril by disrupting β-sheets within the residue domain 12VHHQKLVFF20. A comparison between binding modes leading or not leading to partial dissociation of the outermost peptide suggests that the latter is attributed to a few subtle key structural and energetic interaction-based differences. Interestingly, partial dissociation appears to be either an outcome of high affinity interactions or a cause leading to high affinity interactions between the molecules and the fibril, which could partly serve as a compensation for the energy loss in the fibril due to partial dissociation. In conjunction with this, we suggest a potential inhibition mechanism of Αβ1-42 aggregation by the molecules, where the partially dissociated 16KLVFF20 domain of the outermost peptide could either remain unstructured or wrap around to form intramolecular interactions with the same peptide's 29GAIIG33 domain, while the molecules could additionally act as a patch against the external edge of the second outermost peptide's 16KLVFF20 domain. Thereby, individually or concurrently, these could prohibit fibril elongation.
Collapse
Affiliation(s)
| | | | - Doan A. Le
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Phanourios Tamamis
- Artie McFerrin Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
22
|
Ngo ST, Nguyen PH, Derreumaux P. Stability of Aβ11-40 Trimers with Parallel and Antiparallel β-Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. J Phys Chem B 2020; 124:617-626. [PMID: 31931566 DOI: 10.1021/acs.jpcb.9b10982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of the amyloid (Aβ) peptide of 39-43 amino acids into plaques is observed in the brain of Alzheimer's disease (AD) patients, but the mechanisms underlying the neurotoxicity of Aβ oligomers are still elusive. One suggested initial mechanism is related to the implications of amyloid membrane interactions, but characterization of these assemblies is challenging by experimental means. In this study, we have explored the stability of a trimer of Aβ11-40 in parallel and antiparallel β-sheet structures for the wild-type sequence and its F20W mutant in a dipalmitoylphosphatidylcholine membrane using atomistic replica exchange molecular dynamic simulations. We show that both the U-shape organization and the assembly of β-hairpins are maintained in the membrane and are resistant to the mutation F20W. In contrast the models are destabilized by the F19P mutation. Overall, our results indicate that these two assemblies represent minimal seeds or nuclei for the formation of either amyloid fibrils, a variety of β-barrel pores, or various aggregates for many Aβ sequences in a membrane-mimicking environment.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique , UPR 9080, CNRS, Université de Paris , 13 rue Pierre et Marie Curie , 75005 , Paris , France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University , 75005 Paris , France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
23
|
Nguyen PH, Sterpone F, Derreumaux P. Aggregation of disease-related peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:435-460. [PMID: 32145950 DOI: 10.1016/bs.pmbts.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein misfolding and aggregation of amyloid proteins is the fundamental cause of more than 20 diseases. Molecular mechanisms of the self-assembly and the formation of the toxic aggregates are still elusive. Computer simulations have been intensively used to study the aggregation of amyloid peptides of various amino acid lengths related to neurodegenerative diseases. We review atomistic and coarse-grained simulations of short amyloid peptides aimed at determining their transient oligomeric structures and the early and late aggregation steps.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
24
|
Jonnalagadda SVR, Gerace AJ, Thai K, Johnson J, Tsimenidis K, Jakubowski JM, Shen C, Henderson KJ, Tamamis P, Gkikas M. Amyloid Peptide Scaffolds Coordinate with Alzheimer’s Disease Drugs. J Phys Chem B 2019; 124:487-503. [DOI: 10.1021/acs.jpcb.9b10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Andrew James Gerace
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kathleen Thai
- Department of Biology, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jonathan Johnson
- Department of Biology, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kostas Tsimenidis
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Joseph M. Jakubowski
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Christina Shen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kendal J. Henderson
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
25
|
Liu L, Dong X, Liu Y, Österlund N, Gräslund A, Carloni P, Li J. Role of hydrophobic residues for the gaseous formation of helical motifs. Chem Commun (Camb) 2019; 55:5147-5150. [PMID: 30977489 DOI: 10.1039/c9cc01898k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The secondary structure content of proteins and their complexes may change significantly on passing from aqueous solution to the gas phase (as in mass spectrometry experiments). In this work, we investigate the impact of hydrophobic residues on the formation of the secondary structure of a real protein complex in the gas phase. We focus on a well-studied protein complex, the amyloid-β (1-40) dimer (2Aβ). Molecular dynamics simulations reproduce the results of ion mobility-mass spectrometry experiments. In addition, a helix (not present in the solution) is identified involving 19FFAED23, consistent with infrared spectroscopy data on an Aβ segment. Our simulations further point to the role of hydrophobic residues in the formation of helical motifs - hydrophobic sidechains "shield" helices from being approached by residues that carry hydrogen bond sites. In particular, two hydrophobic phenylalanine residues, F19 and F20, play an important role for the helix, which is induced in the gas phase in spite of the presence of two carboxyl-containing residues.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Fuzhou University, 350002 Fuzhou, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
27
|
Thai NQ, Bednarikova Z, Gancar M, Linh HQ, Hu CK, Li MS, Gazova Z. Compound CID 9998128 Is a Potential Multitarget Drug for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:2588-2598. [PMID: 29775277 DOI: 10.1021/acschemneuro.8b00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have probed small molecule compound CID 9998128 as a potential multitarget drug for the Alzheimer's disease (AD) using in silico and in vitro experiments. By all-atom simulation and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, we have demonstrated that this compound strongly binds to both amyloid β42 (Aβ42) fibrils and β-secretase, and the van der Waals interaction dominates over the electrostatic interaction in binding affinity. A detailed analysis at the atomic level revealed that indazole in CID 99998128 structure made a major contribution to instability of all studied complexes. In vitro experiments have shown that CID 9998128 inhibits the Aβ42 amyloid fibrillization and is capable to clear Aβ42 fibrils. Moreover, the compound dose-dependently decreases β-site amyloid precursor protein cleaving enzyme (BACE-1) activity with EC50 value in micromolar range. Thus, our study has revealed that CID 9998128 is a good candidate for AD treatment through preventing production of Aβ peptides and degrading their aggregates. For drug design, we predict that the chemical structure of potent AD multitarget inhibitors should not contain indazole.
Collapse
Affiliation(s)
- Nguyen Quoc Thai
- Institute for Computational Sciences and Technology, SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 040 01, Slovakia
| | - Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 040 01, Slovakia
| | - Huynh Quang Linh
- Biomedical Engineering Department, University of Technology -VNU HCM, 268 Ly Thuong Kiet Str., Distr. 10, Ho Chi Minh City, Vietnam
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Physics Division, National Center for Theretical Sciences, Hsinchu 30013, Taiwan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
- Department of Systems Science, University of Schanghai for Science and Technology, Shanghai 200093, China
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 040 01, Slovakia
| |
Collapse
|
28
|
Nguyen PH, del Castillo-Frias MP, Berthoumieux O, Faller P, Doig AJ, Derreumaux P. Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. J Alzheimers Dis 2018; 64:S659-S672. [DOI: 10.3233/jad-179902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Maria P. del Castillo-Frias
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Olivia Berthoumieux
- CNRS, LCC (Laboratoire de Chimie de Coordination), Toulouse Cedex 4, France et Université de Toulouse, UPS, INPT, Toulouse Cedex 4, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, Strasbourg, France
| | - Andrew J. Doig
- Manchester Institute of Biotechnology and Department of Chemistry, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| |
Collapse
|
29
|
Das P, Matysiak S, Mittal J. Looking at the Disordered Proteins through the Computational Microscope. ACS CENTRAL SCIENCE 2018; 4:534-542. [PMID: 29805999 PMCID: PMC5968442 DOI: 10.1021/acscentsci.7b00626] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 05/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) have attracted wide interest over the past decade due to their surprising prevalence in the proteome and versatile roles in cell physiology and pathology. A large selection of IDPs has been identified as potential targets for therapeutic intervention. Characterizing the structure-function relationship of disordered proteins is therefore an essential but daunting task, as these proteins can adapt transient structure, necessitating a new paradigm for connecting structural disorder to function. Molecular simulation has emerged as a natural complement to experiments for atomic-level characterizations and mechanistic investigations of this intriguing class of proteins. The diverse range of length and time scales involved in IDP function requires performing simulations at multiple levels of resolution. In this Outlook, we focus on summarizing available simulation methods, along with a few interesting example applications. We also provide an outlook on how these simulation methods can be further improved in order to provide a more accurate description of IDP structure, binding, and assembly.
Collapse
Affiliation(s)
- Payel Das
- IBM Thomas J.
Watson Research Center, Yorktown Heights, New York 10598, United States
- E-mail:
| | - Silvina Matysiak
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Jeetain Mittal
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
30
|
Ginex T, Trius M, Luque FJ. Computational Study of the Aza-Michael Addition of the Flavonoid (+)-Taxifolin in the Inhibition of β-Amyloid Fibril Aggregation. Chemistry 2018; 24:5813-5824. [PMID: 29384229 DOI: 10.1002/chem.201706072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 01/30/2023]
Abstract
Inhibition of abnormal protein self-aggregation is an attractive strategy against amyloidogenic diseases, but has found limited success due to the complexity of protein self-assembly, the absence of fully reproducible aggregation assays, and the scarce knowledge of the inhibition mechanisms by small molecules. In this context, catechol-containing compounds may lead to covalent adducts with amyloid fibrils that interfere with the aggregation process. In particular, the covalent adduct formed between the oxidized form of (+)-taxifolin and an β-amyloid (Aβ42) suggests the involvement of a specific recognition motif that enables the chemical reaction with Aβ42. In this study, we have examined the mechanisms implicated in the aza-Michael addition of the o-quinone species of (+)-taxifolin with Aβ42 fibrils. The results support the binding of (+)-taxifolin to the hydrophobic groove delimited by the edges defined by Lys16 and Glu22 residues in the fibril. The chemical reaction proceeds through the nucleophilic attack of the deprotonated amino group of a Lys16 residue in a process activated by the interaction between the o-quinone ring with a vicinal Lys16 residue, as well as by a water-assisted proton transfer, which is the rate-limiting step of the reaction. This specific inhibition mechanism, which may explain the enhanced anti-aggregating activity of oxidized flavonoids compared to fresh compounds, holds promise for developing disease-modifying therapies.
Collapse
Affiliation(s)
- Tiziana Ginex
- Department of Nutrition, Food Science, and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
| | - Marta Trius
- Department of Nutrition, Food Science, and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science, and Gastronomy, Faculty of Pharmacy and Institute of Biomedicine, Campus Torribera, University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
| |
Collapse
|
31
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer. J Chem Phys 2018; 148:045105. [DOI: 10.1063/1.5018459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
32
|
Jin Y, Sun Y, Lei J, Wei G. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity. Phys Chem Chem Phys 2018; 20:17208-17217. [DOI: 10.1039/c8cp01631c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dihydrochalcone molecules destabilize Aβ17–42protofibrils by disrupting the N-terminal β1 region and the turn region through binding to the protofibril cavity.
Collapse
Affiliation(s)
- Yibo Jin
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| | - Yunxiang Sun
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| | - Jiangtao Lei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (Ministry of Education)
- Collaborative Innovation Center of Advanced Microstructures (Nanjing)
- Fudan University
| |
Collapse
|
33
|
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2017; 13:23-37. [DOI: 10.1080/17460441.2018.1403419] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | | | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Cao Y, Jiang X, Han W. Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1-40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. J Chem Theory Comput 2017; 13:5731-5744. [PMID: 29019683 DOI: 10.1021/acs.jctc.7b00803] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Early oligomerization during amyloid-β (Aβ) aggregation is essential for Aβ neurotoxicity. Understanding how unstructured Aβs assemble into oligomers, especially those rich in β-sheets, is essential but remains challenging as the assembly process is too transient for experimental characterization and too slow for molecular dynamics simulations. So far, atomic simulations are limited only to studies of either oligomer structures or assembly pathways for short Aβ segments. To overcome the computational challenge, we combine in this study a hybrid-resolution model and adaptive sampling techniques to perform over 2.7 ms of simulations of formation of full-length Aβ40 dimers that are the earliest toxic oligomeric species. The Markov state model is further employed to characterize the transition pathways and associated kinetics. Our results show that for two major forms of β-sheet-rich structures reported experimentally, the corresponding assembly mechanisms are markedly different. Hairpin-containing structures are formed by direct binding of soluble Aβ in β-hairpin-like conformations. Formation of parallel, in-register structures resembling fibrils occurs ∼100-fold more slowly and involves a rapid encounter of Aβ in arbitrary conformations followed by a slow structural conversion. The structural conversion proceeds via diverse pathways but always requires transient unfolding of encounter complexes. We find that the transition kinetics could be affected differently by intra-/intermolecular interactions involving individual residues in a conformation-dependent manner. In particular, the interactions involving Aβ's N-terminal part promote the assembly into hairpin-containing structures but delay the formation of fibril-like structures, thus explaining puzzling observations reported previously regarding the roles of this region in the early assembly process.
Collapse
Affiliation(s)
- Yang Cao
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Xuehan Jiang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| | - Wei Han
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School , Shenzhen, 518055, China
| |
Collapse
|
35
|
Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level. Biophys J 2017; 113:805-816. [PMID: 28834717 DOI: 10.1016/j.bpj.2017.06.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/22/2022] Open
Abstract
The structural underpinnings for the higher toxicity of the oligomeric intermediates of amyloidogenic peptides, compared to the mature fibrils, remain unknown at present. The transient nature and heterogeneity of the oligomers make it difficult to follow their structure. Here, using vibrational and solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we show that freely aggregating Aβ40 oligomers in physiological solutions have an intramolecular antiparallel configuration that is distinct from the intermolecular parallel β-sheet structure observed in mature fibrils. The intramolecular hydrogen-bonding network flips nearly 90°, and the two β-strands of each monomeric unit move apart, to give rise to the well-known intermolecular in-register parallel β-sheet structure in the mature fibrils. Solid-state nuclear magnetic resonance distance measurements capture the interstrand separation within monomer units during the transition from the oligomer to the fibril form. We further find that the D23-K28 salt-bridge, a major feature of the Aβ40 fibrils and a focal point of mutations linked to early onset Alzheimer's disease, is not detectable in the small oligomers. Molecular dynamics simulations capture the correlation between changes in the D23-K28 distance and the flipping of the monomer secondary structure between antiparallel and parallel β-sheet architectures. Overall, we propose interstrand separation and salt-bridge formation as key reaction coordinates describing the structural transition of the small Aβ40 oligomers to fibrils.
Collapse
|
36
|
Kalhor HR, Jabbari MP. Inhibition Mechanisms of a Pyridazine-Based Amyloid Inhibitor: As a β-Sheet Destabilizer and a Helix Bridge Maker. J Phys Chem B 2017; 121:7633-7645. [DOI: 10.1021/acs.jpcb.7b05189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamid R. Kalhor
- Biochemistry Research Laboratory,
Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| | - M. Parsa Jabbari
- Biochemistry Research Laboratory,
Department of Chemistry, Sharif University of Technology, PO Box: 11365-11155, Tehran, Iran
| |
Collapse
|
37
|
Dong M, Zhao W, Hu D, Ai H, Kang B. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds. ACS Chem Neurosci 2017; 8:1577-1588. [PMID: 28406293 DOI: 10.1021/acschemneuro.7b00080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Amyloid-β (Aβ40/Aβ42) peptide with a length of 40 or 42 residues is naturally secreted as cleavage product of the amyloid precursor protein, and formation of Aβ aggregates in a patient's brain is a hallmark of Alzheimer's disease (AD). Therefore, disaggregation and disruption provide potential therapeutic approaches to reduce, inhibit, and even reverse Aβ aggregation. The disaggregation/inhibition effect of the inhibitors applies generally to both Aβ40 and Aβ42 aggregations. Here we capture the atomic-level details of the interaction between Aβ40/Aβ42 and either natural tanshinone compound TS1 or its derivative TS0, and observe novel results by using molecular dynamics simulations. We observe that the natural TS1 indeed inhibits the monomolecular Aβ42 (mAβ42) aggregation and disaggregates Aβ42 amyloid fibrils, being in good agreement with the experimental results. TS1 is favorable to stabilize mAβ40 and even Aβ40 fibril, playing an opposite role to that in the Aβ42 counterpart, however. TS0 can inhibit the misfolding of either mAβ40 or mAβ42 and disaggregate Aβ42 fibril but stabilize the Aβ40 fibril. Using a combination of secondary structural analysis, MM-PBSA binding energy calculations, and radial distribution functions computations, we find that both TS0 and TS1, especially the former, prefer to bind at the charged residues within disordered N-terminus with a scarce positive binding energy and disappear the characteristic C-terminal bend region of Aβ42 fibril, as well as twist the Aβ42 fibril seriously. It turns out to destabilize the Aβ42 fibril and enable the conversion of U-shaped Aβ42 fibril from the onefold to the twofold morphologies. The N-terminal binding preference helps us to identify N-terminal region as the specific epitope for specific inhibitors/drugs (such as TS0 and analogues), heralding unusual inhibition/disaggregation or stabilization mechanisms, and offering an alternative direction in engineering new inhibitors to treat AD.
Collapse
Affiliation(s)
- Mingyan Dong
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wei Zhao
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dingkun Hu
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongqi Ai
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Baotao Kang
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
38
|
Man VH, Nguyen PH, Derreumaux P. High-Resolution Structures of the Amyloid-β 1-42 Dimers from the Comparison of Four Atomistic Force Fields. J Phys Chem B 2017; 121:5977-5987. [PMID: 28538095 DOI: 10.1021/acs.jpcb.7b04689] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dimer of the amyloid-β peptide Aβ of 42 residues is the smallest toxic species in Alzheimer's disease, but its equilibrium structures are unknown. Here we determined the equilibrium ensembles generated by the four atomistic OPLS-AA, CHARMM22*, AMBER99sb-ildn, and AMBERsb14 force fields with the TIP3P water model. On the basis of 144 μs replica exchange molecular dynamics simulations (with 750 ns per replica), we find that the four force fields lead to random coil ensembles with calculated cross-collision sections, hydrodynamics properties, and small-angle X-ray scattering profiles independent of the force field. There are, however, marked differences in secondary structure, with the AMBERsb14 and CHARMM22* ensembles overestimating the CD-derived helix content, and the OPLS-AA and AMBER99sb-ildn secondary structure contents in agreement with CD data. Also the intramolecular beta-hairpin content spanning residues 17-21 and 30-36 varies between 1.5% and 13%. Overall, there are significant differences in tertiary and quaternary conformations among all force fields, and the key finding, irrespective of the force field, is that the dimer is stabilized by nonspecific interactions, explaining therefore its possible transient binding to multiple cellular partners and, in part, its toxicity.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University , Raleigh, North Carolina 27695-8202, United States
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot , Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot , Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
39
|
Man VH, Nguyen PH, Derreumaux P. Conformational Ensembles of the Wild-Type and S8C Aβ1-42 Dimers. J Phys Chem B 2017; 121:2434-2442. [PMID: 28245647 PMCID: PMC5944329 DOI: 10.1021/acs.jpcb.7b00267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We characterized the dimer of the amyloid-β wild-type (WT) peptide, Aβ, of 42 residues and its disulfide-bond-locked double mutant (S8C) by replica exchange molecular dynamics simulations. Aβ dimers are known to be the smallest toxic species in Alzheimer's disease, and the S8C mutant has been shown experimentally to form an exclusive homogeneous and neurotoxic dimer. Our 50 μs all-atom simulations reveal similar secondary structures and collision cross-sections but very different intramolecular and intermolecular conformations upon double S8C mutation. Both dimers are very dynamic with hundreds of free-energy minima that differ from the U-shape and S-shape conformations of the peptides in the fibrils. The only common structural feature, shared by both species with a probability of 4% in WT and 12% in S8C-S8C, is a three-stranded β-sheet spanning the 17-23, 29-36, and 39-41 residues, which does not exist in the Aβ40 WT dimers.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, United States
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, IBPC, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
40
|
Chandra B, Korn A, Maity BK, Adler J, Rawat A, Krueger M, Huster D, Maiti S. Stereoisomers Probe Steric Zippers in Amyloid-β. J Phys Chem B 2017; 121:1835-1842. [PMID: 28140589 DOI: 10.1021/acs.jpcb.6b12332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shape complementarity between close-packed residues plays a critical role in the amyloid aggregation process. Here, we probe such "steric zipper" interactions in amyloid-β (Aβ40), whose aggregation is linked to Alzheimer's disease, by replacing natural residues by their stereoisomers. Such mutations are expected to specifically destabilize the shape sensitive "packing" interactions, which may potentially increase their solubility and change other properties. We study the stereomutants DF19 and DL34 and also the DA2/DF4/DH6/DS8 mutant of Aβ40. F19-L34 is a critical contact in a tightly packed region of Aβ, while residues 1-9 are known to be disordered. While both DF19 and DL34 slow down the kinetics of aggregation and form amyloid fibrils efficiently, only DL34 increases the final solubility. DF19 gives rise to additional off-pathway aggregation which results in large, kinetically stable aggregates, and has lower net solubility. DA2/DF4/DH6/DS8 does not have an effect on the kinetics or the solubility. Notably, both DF19 and DL34 oligomers have a significantly lower level of interactions with lipid vesicles and live cells. We conclude that stereoisomers can cause complex site dependent changes in amyloid properties, and provide an effective tool to determine the role of individual residues in shaping the packed interiors of amyloid aggregates.
Collapse
Affiliation(s)
- Bappaditya Chandra
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Alexander Korn
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Barun Kumar Maity
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Juliane Adler
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Anoop Rawat
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Martin Krueger
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany.,Institut für Anatomie, Universität Leipzig , Liebigstr. 13, D-04103 Leipzig, Germany
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik, Universität Leipzig , Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Science, Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|