1
|
Das N, Khan T, Halder B, Ghosh S, Sen P. Macromolecular crowding effects on protein dynamics. Int J Biol Macromol 2024; 281:136248. [PMID: 39374718 DOI: 10.1016/j.ijbiomac.2024.136248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties. One of the essential characteristics of protein is its dynamic nature; however, how protein dynamics get modulated in the crowded milieu has been largely ignored. This article discusses how protein translational, rotational, conformational, and solvation dynamics change under crowded conditions, summarizing key observations in the literature. We emphasize our research on microsecond conformational and water dynamics in crowded milieus and their impact on enzymatic activity and stability. Lastly, we provided our outlook on how this field might move forward in the future.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
2
|
Foote A, Ishii K, Cullinane B, Tahara T, Goldsmith RH. Quantifying Microsecond Solution-Phase Conformational Dynamics of a DNA Hairpin at the Single-Molecule Level. ACS PHYSICAL CHEMISTRY AU 2024; 4:408-419. [PMID: 39069982 PMCID: PMC11274281 DOI: 10.1021/acsphyschemau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/30/2024]
Abstract
Quantifying the rapid conformational dynamics of biological systems is fundamental to understanding the mechanism. However, biomolecules are complex, often containing static and dynamic heterogeneity, thus motivating the use of single-molecule methods, particularly those that can operate in solution. In this study, we measure microsecond conformational dynamics of solution-phase DNA hairpins at the single-molecule level using an anti-Brownian electrokinetic (ABEL) trap. Different conformational states were distinguished by their fluorescence lifetimes, and kinetic parameters describing transitions between these states were determined using two-dimensional fluorescence lifetime correlation (2DFLCS) analysis. Rather than combining fluorescence signals from the entire data set ensemble, long observation times of individual molecules allowed ABEL-2DFLCS to be performed on each molecule independently, yielding the underlying distribution of the system's kinetic parameters. ABEL-2DFLCS on the DNA hairpins resolved an underlying heterogeneity of fluorescence lifetimes and provided signatures of two-state exponential dynamics with rapid (
Collapse
Affiliation(s)
- Alexander
K. Foote
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kunihiko Ishii
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Brendan Cullinane
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Sarkar B, Ishii K, Tahara T. Pulsed-Interleaved-Excitation Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2024; 128:4685-4695. [PMID: 38692581 PMCID: PMC11104349 DOI: 10.1021/acs.jpcb.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
We report on pulsed-interleaved-excitation two-dimensional fluorescence lifetime correlation spectroscopy (PIE 2D FLCS) to study biomolecular structural dynamics with high sensitivity and high time resolution using Förster resonance energy transfer (FRET). PIE 2D FLCS is an extension of 2D FLCS, which is a unique single-molecule fluorescence method that uses fluorescence lifetime information to distinguish different fluorescence species in equilibrium and resolves their interconversion dynamics with a submicrosecond time resolution. Because 2D FLCS has used only a single-color excitation so far, it was difficult to distinguish a very low-FRET (or zero-FRET) species from only donor-labeled species. We overcome this difficulty by implementing the PIE scheme (i.e., alternate excitation of the donor and acceptor dyes using two temporally interleaved excitations with different colors) to 2D FLCS, realizing two-color excitation and two-color fluorescence detection in 2D FLCS. After proof-of-principle PIE 2D FLCS analysis on the photon data synthesized with Monte Carlo simulation, we apply PIE 2D FLCS to a DNA-hairpin sample and show that this method readily distinguishes four fluorescent species, i.e., high-FRET, low-FRET, and two single-dye-labeled species. In addition, we show that PIE 2D FLCS can also quantitatively evaluate the contributions of the donor-acceptor spectral crosstalk, which often appears as artifacts in FRET studies and degrades the information obtained.
Collapse
Affiliation(s)
- Bidyut Sarkar
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kunihiko Ishii
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
4
|
Pereira AF, Martínez L. Helical Content Correlations and Hydration Structures of the Folding Ensemble of the B Domain of Protein A. J Chem Inf Model 2024; 64:3350-3359. [PMID: 38566451 DOI: 10.1021/acs.jcim.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The B domain of protein A (BdpA), a small three-helix bundle, folds on a time scale of a few microseconds with heterogeneous native and unfolded states. It is widely used as a model for understanding protein folding mechanisms. In this work, we use structure-based models (SBMs) and atomistic simulations to comprehensively investigate how BdpA folding is associated with the formation of its secondary structure. The energy landscape visualization method (ELViM) was used to characterize the pathways that connect the folded and unfolded states of BdpA as well as the sets of structures displaying specific ellipticity patterns. We show that the native state conformational diversity is due mainly to the conformational variability of helix I. Helices I, II, and III occur in a weakly correlated manner, with Spearman's rank correlation coefficients of 0.1539 (I and II), 0.1259 (I and III), and 0.2561 (II and III). These results, therefore, suggest the highest cooperativity between helices II and III. Our results allow the clustering of partially folded structures of folding of the B domain of protein A on the basis of its secondary structure, paving the way to an understanding of environmental factors in the relative stability of the basins of the folding ensemble, which are illustrated by the structural dependency of the protein hydration structures, as computed with minimum-distance distribution functions.
Collapse
Affiliation(s)
- Ander Francisco Pereira
- Institute of Chemistry and Center for Computing in Engineering & Science, Universidade Estadual de Campinas (UNICAMP), 13083-861 Campinas, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering & Science, Universidade Estadual de Campinas (UNICAMP), 13083-861 Campinas, SP, Brazil
| |
Collapse
|
5
|
Mori I, Terasaka S, Yamaguchi S, Otosu T. Diffusion of Multiple Species Resolved by Fluorescence Lifetime Recovery after Photobleaching (FLRAP). Anal Chem 2024; 96:4854-4859. [PMID: 38497530 DOI: 10.1021/acs.analchem.3c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Fluorescence recovery after photobleaching (FRAP) is now an indispensable tool to analyze the diffusion of molecules in vivo and in vitro. However, a conventional fluorescence intensity-based approach has difficulty in analyzing the diffusion of multiple species simultaneously. Here, we report fluorescence lifetime recovery after photobleaching (FLRAP) that incorporates fluorescence lifetime information into FRAP. By using FLRAP, the fluorescence intensity-recovery curves of each species can be successfully extracted from the ensemble photon data by utilizing their species-specific fluorescence decay curves, which are verified by applying FLRAP to two heterogeneous systems. Thus, FLRAP can be a powerful tool to quantitatively elucidate the molecular diffusion of multiple species in complex systems such as in living cells.
Collapse
Affiliation(s)
- Ikumi Mori
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shun Terasaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
6
|
Sano Y, Itoh Y, Kamonprasertsuk S, Suzuki L, Fukasawa A, Oikawa H, Takahashi S. Simple and Efficient Detection Scheme of Two-Color Fluorescence Correlation Spectroscopy for Protein Dynamics Investigation from Nanoseconds to Milliseconds. ACS PHYSICAL CHEMISTRY AU 2024; 4:85-93. [PMID: 38283787 PMCID: PMC10811772 DOI: 10.1021/acsphyschemau.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 01/30/2024]
Abstract
Nanosecond resolved fluorescence correlation spectroscopy (ns-FCS) based on two-color fluorescence detection is a powerful strategy for investigating the fast dynamics of biological macromolecules labeled with donor and acceptor fluorophores. The standard methods of ns-FCS use two single-photon avalanche diodes (SPADs) for the detection of single-color signals (four SPADs for two-color signals) to eliminate the afterpulse artifacts of SPAD at the expense of the efficiency of utilizing photon data in the calculation of correlograms. Herein, we demonstrated that hybrid photodetectors (HPDs) enable the recording of fluorescence photons in ns-FCS based on the minimal system using two HPDs for the detection of two-color signals. However, HPD exhibited afterpulses at a yield with respect to the rate of photodetection (<10-4) much lower than that of SPADs (∼10-2), which could still hamper correlation measurements. We demonstrated that the simple subtraction procedure could eliminate afterpulse artifacts. While the quantum efficiency of photodetection for HPDs is lower than that for high-performance SPADs, the developed system can be practically used for two-color ns-FCS in a time domain longer than a few nanoseconds. The fast chain dynamics of the B domain of protein A in the unfolded state was observed using the new method.
Collapse
Affiliation(s)
- Yutaka Sano
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yuji Itoh
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Supawich Kamonprasertsuk
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Leo Suzuki
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Atsuhito Fukasawa
- Electron
Tube Division, Hamamatsu Photonics K. K., Iwata, Shizuoka 438-0193, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- MOLCURE, Kawasaki, Kanagawa 212-0032, Japan
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Department
of Chemistry, Graduate School of Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Graduate
School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
7
|
Yanaka S, Yagi-Utsumi M, Kato K, Kuwajima K. The B domain of protein A retains residual structures in 6 M guanidinium chloride as revealed by hydrogen/deuterium-exchange NMR spectroscopy. Protein Sci 2023; 32:e4569. [PMID: 36659853 PMCID: PMC9926473 DOI: 10.1002/pro.4569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
The characterization of residual structures persistent in unfolded proteins is an important issue in studies of protein folding, because the residual structures present, if any, may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the residual structures of the isolated B domain (BDPA) of staphylococcal protein A in 6 M guanidinium chloride. BDPA is a small three-helix-bundle protein, and until recently its folding/unfolding reaction has been treated as a simple two-state process between the native and the fully unfolded states. We employed a dimethylsulfoxide (DMSO)-quenched hydrogen/deuterium (H/D)-exchange 2D NMR techniques with the use of spin desalting columns, which allowed us to investigate the H/D-exchange behavior of individually identified peptide amide (NH) protons. We obtained H/D-exchange protection factors of the 21 NH protons that form an α-helical hydrogen bond in the native structure, and the majority of these NH protons were significantly protected with a protection factor of 2.0-5.2 in 6 M guanidinium chloride, strongly suggesting that these weakly protected NH protons form much stronger hydrogen bonds under native folding conditions. The results can be used to deduce the structure of an early folding intermediate, when such an intermediate is shown by other methods. Among three native helical regions, the third helix in the C-terminal side was highly protected and stabilized by side-chain salt bridges, probably acting as the folding initiation site of BDPA. The present results are discussed in relation to previous experimental and computational findings on the folding mechanisms of BDPA.
Collapse
Affiliation(s)
- Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (the Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi, Japan
| | - Kunihiro Kuwajima
- Department of Physics, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Ren J, Andrikopoulos N, Velonia K, Tang H, Cai R, Ding F, Ke PC, Chen C. Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. J Am Chem Soc 2022; 144:9184-9205. [PMID: 35536591 DOI: 10.1021/jacs.2c02277] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An inconvenient hurdle in the practice of nanomedicine is the protein corona, a spontaneous collection of biomolecular species by nanoparticles in living systems. The protein corona is dynamic in composition and may entail improved water suspendability and compromised delivery and targeting to the nanoparticles. How much of this nonspecific protein ensemble is determined by the chemistry of the nanoparticle core and its surface functionalization, and how much of this entity is dictated by the biological environments that vary spatiotemporally in vivo? How do we "live with" and exploit the protein corona without significantly sacrificing the efficacy of nanomedicines in diagnosing and curing human diseases? This article discusses the chemical and biophysical signatures of the protein corona and ponders challenges ahead for the field of nanomedicine.
Collapse
Affiliation(s)
- Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kelly Velonia
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Nanomedicine Center, The GBA National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
| |
Collapse
|
9
|
Dyakin VV, Uversky VN. Arrow of Time, Entropy, and Protein Folding: Holistic View on Biochirality. Int J Mol Sci 2022; 23:ijms23073687. [PMID: 35409047 PMCID: PMC8998916 DOI: 10.3390/ijms23073687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chirality is a universal phenomenon, embracing the space–time domains of non-organic and organic nature. The biological time arrow, evident in the aging of proteins and organisms, should be linked to the prevalent biomolecular chirality. This hypothesis drives our exploration of protein aging, in relation to the biological aging of an organism. Recent advances in the chirality discrimination methods and theoretical considerations of the non-equilibrium thermodynamics clarify the fundamental issues, concerning the biphasic, alternative, and stepwise changes in the conformational entropy associated with protein folding. Living cells represent open, non-equilibrium, self-organizing, and dissipative systems. The non-equilibrium thermodynamics of cell biology are determined by utilizing the energy stored, transferred, and released, via adenosine triphosphate (ATP). At the protein level, the synthesis of a homochiral polypeptide chain of L-amino acids (L-AAs) represents the first state in the evolution of the dynamic non-equilibrium state of the system. At the next step the non-equilibrium state of a protein-centric system is supported and amended by a broad set of posttranslational modifications (PTMs). The enzymatic phosphorylation, being the most abundant and ATP-driven form of PTMs, illustrates the principal significance of the energy-coupling, in maintaining and reshaping the system. However, the physiological functions of phosphorylation are under the permanent risk of being compromised by spontaneous racemization. Therefore, the major distinct steps in protein-centric aging include the biosynthesis of a polypeptide chain, protein folding assisted by the system of PTMs, and age-dependent spontaneous protein racemization and degradation. To the best of our knowledge, we are the first to pay attention to the biphasic, alternative, and stepwise changes in the conformational entropy of protein folding. The broader view on protein folding, including the impact of spontaneous racemization, will help in the goal-oriented experimental design in the field of chiral proteomics.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Bldg, 35, Orangeburg, NY 10962, USA
- Correspondence:
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA;
| |
Collapse
|
10
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
11
|
Heo W, Hasegawa K, Okamoto K, Sako Y, Ishii K, Tahara T. Scanning Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Conformational Dynamics of DNA Holliday Junction from Microsecond to Subsecond. J Phys Chem Lett 2022; 13:1249-1257. [PMID: 35089049 DOI: 10.1021/acs.jpclett.1c03787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is widely utilized to investigate the structural heterogeneity and dynamics of biomolecules. However, it has been difficult to simultaneously achieve a wide observation time window, a high structure resolution, and a high time resolution with the current smFRET methods. Herein, we introduce a new method utilizing two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS) and surface immobilization techniques. This method, scanning 2D FLCS, enables us to examine the structural heterogeneity and dynamics of immobilized biomolecules on a time scale from microsecond to subsecond by slowly scanning the sample stage at the rate of ∼1 μm/s. Application to the DNA Holliday junction (HJ) complex under various [Mg2+] conditions demonstrates that scanning 2D FLCS enables tracking reaction kinetics from 25 μs to 30 ms with a time resolution as high as 1 μs. Furthermore, the high structure resolution of scanning 2D FLCS allows us to unveil the ensemble nature of each isomer state and the heterogeneity of the dynamics of the HJ.
Collapse
Affiliation(s)
- Wooseok Heo
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kazuto Hasegawa
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kenji Okamoto
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
12
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
13
|
Sarkar B, Ishii K, Tahara T. Microsecond Folding of preQ 1 Riboswitch and Its Biological Significance Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Am Chem Soc 2021; 143:7968-7978. [PMID: 34013733 DOI: 10.1021/jacs.1c01077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboswitches are regulatory elements of bacterial mRNA which function with conformational switching upon binding of specific cellular metabolites. In particular, transcriptional riboswitches regulate gene expression kinetically through the conformational change of the aptamer domain. In this study, we investigate the conformational dynamics and ligand binding mechanisms of the aptamer domain of a transcriptional prequeuosine (preQ1) riboswitch from Bacillus subtilis using two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS) with microsecond time resolution. The obtained time-resolved single-molecule data indicate that the aptamer domain undergoes folding/unfolding including three forms, which are attributed to hairpin (O), pseudoknot-like (pF), and H-type pseudoknot (fF) structures. It is found that a cofactor, Mg2+, binds only to the fF form with the conformational selection mechanism. In contrast, it is indicated that the ligand, preQ1, binds to the O form with the induced-fit mechanism and significantly accelerates the microsecond O → pF folding process. It is also shown that the binding with preQ1 substantially stabilizes the fF form that is generated from the pF form with a long time constant (>10 ms). Combining these results with the results of a former smFRET study on the slower time scale, we obtain an overall picture of the folding/unfolding dynamics of the aptamer domain as well as its energy landscape. On the basis of the picture obtained, we discuss the significance of the microsecond folding/unfolding of the aptamer domain for biological function of the riboswitch and propose the molecular mechanism of the gene expression controlled by the structural dynamics of the aptamer domain.
Collapse
Affiliation(s)
- Bidyut Sarkar
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan.,Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
14
|
Trotter D, Wallin S. Effects of Topology and Sequence in Protein Folding Linked via Conformational Fluctuations. Biophys J 2020; 118:1370-1380. [PMID: 32061276 DOI: 10.1016/j.bpj.2020.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
Experiments have compared the folding of proteins with different amino acid sequences but the same basic structure, or fold. Results indicate that folding is robust to sequence variations for proteins with some nonlocal folds, such as all-β, whereas the folding of more local, all-α proteins typically exhibits a stronger sequence dependence. Here, we use a coarse-grained model to systematically study how variations in sequence perturb the folding energy landscapes of three model sequences with 3α, 4β + α, and β-barrel folds, respectively. These three proteins exhibit folding features in line with experiments, including expected rank order in the cooperativity of the folding transition and stability-dependent shifts in the location of the free-energy barrier to folding. Using a generalized-ensemble simulation approach, we determine the thermodynamics of around 2000 sequence variants representing all possible hydrophobic or polar single- and double-point mutations. From an analysis of the subset of stability-neutral mutations, we find that folding is perturbed in a topology-dependent manner, with the β-barrel protein being the most robust. Our analysis shows, in particular, that the magnitude of mutational perturbations of the transition state is controlled in part by the size or "width" of the underlying conformational ensemble. This result suggests that the mutational robustness of the folding of the β-barrel protein is underpinned by its conformationally restricted transition state ensemble, revealing a link between sequence and topological effects in protein folding.
Collapse
Affiliation(s)
- Daniel Trotter
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
15
|
Otosu T, Yamaguchi S. Effect of electrostatic interaction on the leaflet-specific diffusion in a supported lipid bilayer revealed by fluorescence lifetime correlation analysis. Phys Chem Chem Phys 2020; 22:1242-1249. [DOI: 10.1039/c9cp05833h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid–support electrostatic interaction determines the lipid dynamics in the proximal leaflet of a SLB.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| |
Collapse
|
16
|
Sarkar B, Ishii K, Tahara T. Microsecond Conformational Dynamics of Biopolymers Revealed by Dynamic-Quenching Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy with Single Dye Labeling. J Phys Chem Lett 2019; 10:5536-5541. [PMID: 31393133 DOI: 10.1021/acs.jpclett.9b01513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The single-molecule Förster resonance energy transfer (smFRET) technique is widely used for studying conformational dynamics of biopolymers. However, smFRET requires double dye labeling and is usually utilized for detecting dynamics on slow time scales (≳ milliseconds). In this Letter, we report dynamic-quenching two-dimensional fluorescence lifetime correlation spectroscopy (DQ 2D FLCS) that can elucidate the microsecond conformational dynamics of biopolymers with only single dye labeling. In DQ 2D FLCS, the difference in solvent accessibility of the labeled dye makes the fluorescence lifetime different, which is used for distinguishing different conformers. By applying DQ 2D FLCS to a singly labeled DNA hairpin, we successfully detect microsecond interconversion dynamics between the open and closed forms and evaluate the state-specific solvent accessibility of each form with Stern-Volmer analysis. Because DQ 2D FLCS is sensitive to the local structural change, it is complementary to FRET-based 2D FLCS and thus is a new, powerful tool for studying structural dynamics of biopolymers.
Collapse
Affiliation(s)
- Bidyut Sarkar
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
17
|
Otosu T, Ishii K, Tahara T. Multifocus Fluorescence Correlation Spectroscopy with Spatially Separated Excitation Beams. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuhiro Otosu
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kunihiko Ishii
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Otosu T, Yamaguchi S. Reduction of glass-surface charge density slows the lipid diffusion in the proximal leaflet of a supported lipid bilayer. J Chem Phys 2019; 151:025102. [PMID: 31301703 DOI: 10.1063/1.5103221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the effect of a solid support on the dynamical properties of a supported lipid bilayer (SLB) is a prerequisite for the applications of SLB as a model biomembrane. Here, we applied two-dimensional fluorescence lifetime correlation spectroscopy to examine the effect of solution pH on the diffusion of lipids in the proximal/distal leaflets of a zwitterionic SLB. Leaflet-specific diffusion analyses at various pH revealed that the diffusion of lipids in the proximal leaflet facing a glass surface becomes slower by decreasing pH with the transition pH of ∼7.4. We attributed it to the reduction of the surface charge density of a glass support. Furthermore, the data clearly showed that the lipid diffusion in the distal leaflet facing a bulk solution is insensitive to the change in the diffusion property of the proximal leaflet. This reflects a weak interleaflet coupling between the proximal and distal leaflets of the SLB.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
19
|
Otosu T, Yamaguchi S. Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Concepts and Applications. Molecules 2018; 23:E2972. [PMID: 30441830 PMCID: PMC6278346 DOI: 10.3390/molecules23112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
We review the basic concepts and recent applications of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS), which is the extension of fluorescence correlation spectroscopy (FCS) to analyze the correlation of fluorescence lifetime in addition to fluorescence intensity. Fluorescence lifetime is sensitive to the microenvironment and can be a "molecular ruler" when combined with FRET. Utilization of fluorescence lifetime in 2D FLCS thus enables us to quantify the inhomogeneity of the system and the interconversion dynamics among different species with a higher time resolution than other single-molecule techniques. Recent applications of 2D FLCS to various biological systems demonstrate that 2D FLCS is a unique and promising tool to quantitatively analyze the microsecond conformational dynamics of macromolecules at the single-molecule level.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
20
|
Otosu T, Yamaguchi S. Quantifying the Diffusion of Lipids in the Proximal/Distal Leaflets of a Supported Lipid Bilayer by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2018; 122:10315-10319. [DOI: 10.1021/acs.jpcb.8b08614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
21
|
Otosu T, Yamaguchi S. Total Internal Reflection Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2018; 122:5758-5764. [DOI: 10.1021/acs.jpcb.8b01176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
22
|
Tao Y, Wu Y, Zhang L. Advancements of two dimensional correlation spectroscopy in protein researches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:185-193. [PMID: 29409703 DOI: 10.1016/j.saa.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 05/26/2023]
Abstract
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.
Collapse
Affiliation(s)
- Yanchun Tao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Liping Zhang
- Department of Foundation, Jilin Business and Technology College, No. 1666 Kalunhu Street, Changchun 130507, China.
| |
Collapse
|
23
|
Nandi S, Ghosh S, Bhattacharyya K. Live Cell Microscopy: A Physical Chemistry Approach. J Phys Chem B 2018; 122:3023-3036. [PMID: 29389140 DOI: 10.1021/acs.jpcb.7b11689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probing dynamics of intracellular components using physical chemistry techniques is a remarkable bottom-up approach for understanding the structures and functions of a biological cell. In this "Feature Article", we give an overview on local polarity, solvation, viscosity, acid-base property, red-ox processes (thiol-disulfide exchange), and gene silencing at selected intracellular components inside a live cell. Significant differences have been observed between cancer cells and their noncancer counterparts. We demonstrate that thiol-disulfide exchange, calcium oscillation, and gene silencing are manifested in time dependence of fluorescence intensity. We show that fluorescent gold nanoclusters may be used in drug delivery (e.g., doxorubicin) and selective killing of cancer cells. Further, we discuss dynamics and structural changes of DNA quadruplexes and i-motifs, induced by different external conditions (e.g., pH) and additives (e.g., K+ and other target specific small molecules). We demonstrate that peptidomimetic analogues have high specificity over double-stranded DNA for binding with i-motifs and G-quadruplexes. These results may have significant biological implications.
Collapse
Affiliation(s)
- Somen Nandi
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road , Jadavpur, Kolkata , 700 032 West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road , Jadavpur, Kolkata 700 032 , India
| | - Kankan Bhattacharyya
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , 462 066 Madhya Pradesh , India
| |
Collapse
|