1
|
He C, Shi P, Pang D, Zhang Z, Lin L. Design of S-vacancy FeS2 as an electrocatalyst for NO reduction reaction: A DFT study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Liu H, Park J, Chen Y, Qiu Y, Cheng Y, Srivastava K, Gu S, Shanks BH, Roling LT, Li W. Electrocatalytic Nitrate Reduction on Oxide-Derived Silver with Tunable Selectivity to Nitrite and Ammonia. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01525] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Jaeryul Park
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Yifu Chen
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Yang Qiu
- Institute for Integrated Catalysis, Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, Washington 99352, United States
| | - Yan Cheng
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Kartik Srivastava
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Shuang Gu
- Department of Mechanical Engineering, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260, United States
| | - Brent H. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Luke T. Roling
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Xiao Y, Shen C. Transition-Metal Borides (MBenes) as New High-Efficiency Catalysts for Nitric Oxide Electroreduction to Ammonia by a High-Throughput Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100776. [PMID: 33983676 DOI: 10.1002/smll.202100776] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Here, the authors performed density functional theory calculations to study the catalytic performance of the nitric oxide reduction reaction (NORR) via a series of transition metal borides (MBenes). This work screened the M2 B2 type MBenes from the IVB to V transition metals from the periodic table and systematically probed the catalytic activity and selectivity for the NORR process. It has been reported that Fe2 B2 , Mn2 B2 , and Rh2 B2 can be high-performance catalysts for converting NO to NH3 with smaller limiting potentials than other MBenes, and Nb2 B2 and Hf2 B2 have low limiting potentials of -0.11 V and -0.17 V for the NO production of NH3 . The binding energy of ΔG*N can be a good descriptor of catalytic performance and is determined by the volcano plot of the rate-determining step. The reaction mechanisms for NO reduction to NH3 , N2 , and N2 O have been studied in detail, atomic *N can interact with another *N or one *NO molecule to form N2 and N2 O via two successive hydrogenations. In this regard, *NO hydrogenation to *NOH has a lower formation energy than *HNO, and the MBenes have high selectivity for promoting the NORR and suppressing the hydrogen evolution reaction competition process.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of Materials Science, TU Darmstadt, 64287, Darmstadt, Germany
| | - Chen Shen
- Institute of Materials Science, TU Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Yao Z, Li L, Liu X, Hui KN, Shi L, Zhou F, Hu M, Hui KS. Mechanistic insights into NO‒H 2 reaction over Pt/boron-doped graphene catalyst. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124327. [PMID: 33139106 DOI: 10.1016/j.jhazmat.2020.124327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This work presents a systematical experimental and density functional theory (DFT) studies to reveal the mechanism of NO reduction by H2 reaction over platinum nanoparticles (NPs) deposited on boron-doped graphene (denoted as Pt/BG) catalyst. Both characterizations and DFT calculations identified boron (in Pt/BG) as an additional NO adsorption site other than the widely recognized Pt NPs. Moreover, BG led to a decrease of Pt NPs size in Pt/BG, which facilitated hydrogen spillover. The mathematical and physical criteria of the Langmuir-Hinshelwood dual-site kinetic model over the Pt/BG were satisfied, indicating that adsorbed NO on boron (in Pt/BG) was further activated by H-spillover. On the other hand, Pt/graphene (Pt/Gr) demonstrated a typical Langmuir-Hinshelwood single-site mechanism where Pt NPs solely served as active sites for NO adsorption. This work helps understand NO-H2 reaction over Pt/BG and Pt/Gr catalysts in a closely mechanistic view and provides new insights into roles of active sites for improving the design of catalysts for NO abatement.
Collapse
Affiliation(s)
- Zhenhua Yao
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Lei Li
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, China
| | - Xuguang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kwun Nam Hui
- Institute of Applied Physics and Materials Engineering (IAPME) University of Macau Avenida da Universidade, Taipa, Macau, China
| | - Ling Shi
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Furong Zhou
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Maocong Hu
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, and Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - K S Hui
- School of Engineering, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
5
|
Jiang X, Sharma L, Fung V, Park SJ, Jones CW, Sumpter BG, Baltrusaitis J, Wu Z. Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03999] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Jiang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lohit Sharma
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sang Jae Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jonas Baltrusaitis
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Abstract
The design of heterogeneous catalysts relies on understanding the fundamental surface kinetics that controls catalyst performance, and microkinetic modeling is a tool that can help the researcher in streamlining the process of catalyst design. Microkinetic modeling is used to identify critical reaction intermediates and rate-determining elementary reactions, thereby providing vital information for designing an improved catalyst. In this review, we summarize general procedures for developing microkinetic models using reaction kinetics parameters obtained from experimental data, theoretical correlations, and quantum chemical calculations. We examine the methods required to ensure the thermodynamic consistency of the microkinetic model. We describe procedures required for parameter adjustments to account for the heterogeneity of the catalyst and the inherent errors in parameter estimation. We discuss the analysis of microkinetic models to determine the rate-determining reactions using the degree of rate control and reversibility of each elementary reaction. We introduce incorporation of Brønsted-Evans-Polanyi relations and scaling relations in microkinetic models and the effects of these relations on catalytic performance and formation of volcano curves are discussed. We review the analysis of reaction schemes in terms of the maximum rate of elementary reactions, and we outline a procedure to identify kinetically significant transition states and adsorbed intermediates. We explore the application of generalized rate expressions for the prediction of optimal binding energies of important surface intermediates and to estimate the extent of potential rate improvement. We also explore the application of microkinetic modeling in homogeneous catalysis, electro-catalysis, and transient reaction kinetics. We conclude by highlighting the challenges and opportunities in the application of microkinetic modeling for catalyst design.
Collapse
Affiliation(s)
- Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - James A Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Clark CA, Reddy CP, Xu H, Heck KN, Luo G, Senftle TP, Wong MS. Mechanistic Insights into pH-Controlled Nitrite Reduction to Ammonia and Hydrazine over Rhodium. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03239] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Hao Xu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Guohua Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
8
|
Effect of confinement space on adsorption energy and electronic structure of molecule-metal pairs. Struct Chem 2019. [DOI: 10.1007/s11224-019-01396-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Rizzi V, Mendels D, Sicilia E, Parrinello M. Blind Search for Complex Chemical Pathways Using Harmonic Linear Discriminant Analysis. J Chem Theory Comput 2019; 15:4507-4515. [DOI: 10.1021/acs.jctc.9b00358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valerio Rizzi
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - Dan Mendels
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende CS, Italy
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Facoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
- Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163 Genova GE, Italy
| |
Collapse
|
10
|
Ma H, Li S, Wang H, Schneider WF. Water-Mediated Reduction of Aqueous N-Nitrosodimethylamine with Pd. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7551-7563. [PMID: 31244058 DOI: 10.1021/acs.est.9b01425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pd-catalyzed reduction has emerged as a promising treatment strategy to remove the recalcitrant disinfection byproduct N-nitrosodimethylamine (NDMA). However, the reaction pathways remain unexplored, and questions remain about how water solvent influences NDMA reduction mechanisms and selectivity. Here, we compute the energies and barriers of all relevant elementary steps in NDMA reduction by H2 on Pd(111) using density functional theory. We further calculate water-assisted H-shuttling for all hydrogenation reactions explicitly and include water solvation for all elementary reactions implicitly. We parametrize microkinetic models to predict product formation rates and selectivities over a wide range of NDMA concentrations. We show that H2O-mediated H-shuttling lowers the reaction barriers for all hydrogenation reactions involved in NDMA reduction while implicit solvation has negligible impact on the reaction and activation energies. We further conduct batch experiments with SiO2-supported Pd nanoparticles and compare them with the microkinetic models. The predicted rates, selectivity, and apparent activation energy from the model parametrized with both explicit H2O-mediated H-shuttling and implicit solvation correspond well with experimental observations. Models that ignore water as an H-shuttle or solvent fail to recover the experimental rates and apparent activation energy. We identified the rate-determining steps of the reaction and show the reaction flow pathways of the complicated reaction network. Finally, we demonstrate that water-mediated H-shuttling changes the rate-determining steps and reaction flows of elementary reactions.
Collapse
Affiliation(s)
- Hanyu Ma
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Sichi Li
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Haitao Wang
- School of Environmental Science and Technology , Nankai University , Tianjin 300350 , PR China
| | - William F Schneider
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
11
|
Sun W, Wang Z, Wang Q, Zaman WQ, Cao L, Gong XQ, Yang J. Strategies of alloying effect for regulating Pt-based H 2-SCR catalytic activity. Chem Commun (Camb) 2018; 54:9502-9505. [PMID: 30090883 DOI: 10.1039/c8cc05279d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alloying Pt with 3d transition metals results in the d-band center moving away from the Fermi level, creating compressive strain. The adsorption strength of the reactants should not be too strong or too weak. The presence of compressive strain, which can increase the orbital overlap between *H and *O, results in the reduction of energy barriers of H-assisted N-O bond activation in terms of the Langmuir-Hinshelwood (L-H) reaction route. Our findings provide guidelines to design more efficient H2-SCR catalysts.
Collapse
Affiliation(s)
- Wei Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering. East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Motagamwala AH, Ball MR, Dumesic JA. Microkinetic Analysis and Scaling Relations for Catalyst Design. Annu Rev Chem Biomol Eng 2018; 9:413-450. [DOI: 10.1146/annurev-chembioeng-060817-084103] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microkinetic analysis plays an important role in catalyst design because it provides insight into the fundamental surface chemistry that controls catalyst performance. In this review, we summarize the development of microkinetic models and the inclusion of scaling relationships in these models. We discuss the importance of achieving stoichiometric and thermodynamic consistency in developing microkinetic models. We also outline how analysis of the maximum rates of elementary steps can be used to determine which transition states and adsorbed intermediates are kinetically significant, allowing the derivation of general reaction kinetics rate expressions in terms of changes in binding energies of the relevant transition states and intermediates. Through these analyses, we present how to predict optimal surface coverages and binding energies of adsorbed species, as well as the extent of potential rate improvement for a catalytic system. For systems in which the extent of potential rate improvement is small because of limitations imposed by scaling relations, different approaches, including the addition of promoters and formation of catalysts containing multiple functionalities, can be used to break the scaling relations and obtain further rate enhancement.
Collapse
Affiliation(s)
- Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA;, ,
| | - Madelyn R. Ball
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA;, ,
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA;, ,
| |
Collapse
|