1
|
Mochizuki A, Udagawa A, Miwa Y, Oda Y, Yoneyama K, Okuda C. Blood compatibility of poly(propylene glycol diester) and its water structure observed by differential scanning calorimetry and 2H-nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1258-1272. [PMID: 38457333 DOI: 10.1080/09205063.2024.2324505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/17/2023] [Indexed: 03/10/2024]
Abstract
Recently, we applied solution 2H-nuclear magnetic resonance spectroscopy (2H NMR) to analyze the water (deuterium oxide, D2O) structure in several biopolymers at ambient temperature. We established that polymers with good blood compatibility (i.e. poly(2-methoxyethyl acrylate) (PMEA)) have water observed at high magnetic fields (upfield) compared with bulk water. Polymers containing poly(propylene glycol) (PPG) or poly(propylene oxide) (PPO) exhibit good compatibility; however, the reason for this remains unclear. In addition, reports on the blood compatibility of PPO/PPG are limited. Therefore, PPG diester (PPGest) was prepared as a model polymer, and its blood compatibility and water structure were investigated. PPGest exhibited excellent blood compatibility. The water in PPGest was observed upfield by 2H NMR, and it was defined as non-freezing water via differential scanning calorimetry. Based on these observations, the relationship between the blood compatibility and water structure of PPGest is discussed by comparing with those of PMEA, and the reason for the good performance of PPG/PPO-based polymers is discussed.
Collapse
Affiliation(s)
- Akira Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Japan
| | - Ayaka Udagawa
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Japan
| | | | - Yoshiki Oda
- Technology Joint Management Office of Tokai University, Hiratsuka, Japan
| | - Konatsu Yoneyama
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Japan
| | - Chihiro Okuda
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Japan
| |
Collapse
|
2
|
Banerjee A, Hsu HP, Kremer K, Kukharenko O. Data-Driven Identification and Analysis of the Glass Transition in Polymer Melts. ACS Macro Lett 2023:679-684. [PMID: 37167550 DOI: 10.1021/acsmacrolett.2c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding the nature of glass transition, as well as the precise estimation of the glass transition temperature for polymeric materials, remains open questions in both experimental and theoretical polymer sciences. We propose a data-driven approach, which utilizes the high-resolution details accessible through the molecular dynamics simulation and considers the structural information on individual chains. It clearly identifies the glass transition temperature of polymer melts of weakly semiflexible chains. By combining principal component analysis and clustering, we identify the glass transition temperature in the asymptotic limit even from relatively short time trajectories, which just reach into the Rouse-like monomer displacement regime. We demonstrate that fluctuations captured by the principal component analysis reflect the change in a chain's behavior: from conformational rearrangement above to small fluctuations below the glass transition temperature. Our approach is straightforward to apply and should be applicable to other polymeric glass-forming liquids.
Collapse
Affiliation(s)
- Atreyee Banerjee
- Theory Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hsiao-Ping Hsu
- Theory Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Theory Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Oleksandra Kukharenko
- Theory Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
3
|
Shikata K, Kikutsuji T, Yasoshima N, Kim K, Matubayasi N. Revealing the hidden dynamics of confined water in acrylate polymers: Insights from hydrogen-bond lifetime analysis. J Chem Phys 2023; 158:2887576. [PMID: 37125720 DOI: 10.1063/5.0148753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
Polymers contain functional groups that participate in hydrogen bond (H-bond) with water molecules, establishing a robust H-bond network that influences bulk properties. This study utilized molecular dynamics (MD) simulations to examine the H-bonding dynamics of water molecules confined within three poly(meth)acrylates: poly(2-methoxyethyl acrylate) (PMEA), poly(2-hydroxyethyl methacrylate) (PHEMA), and poly(1-methoxymethyl acrylate) (PMC1A). Results showed that H-bonding dynamics significantly slowed as the water content decreased. Additionally, the diffusion of water molecules and its correlation with H-bond breakage were analyzed. Our findings suggest that when the H-bonds between water molecules and the methoxy oxygen of PMEA are disrupted, those water molecules persist in close proximity and do not diffuse on a picosecond time scale. In contrast, the water molecules H-bonded with the hydroxy oxygen of PHEMA and the methoxy oxygen of PMC1A diffuse concomitantly with the breakage of H-bonds. These results provide an in-depth understanding of the impact of polymer functional groups on H-bonding dynamics.
Collapse
Affiliation(s)
- Kokoro Shikata
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takuma Kikutsuji
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuhiro Yasoshima
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Department of Information and Computer Engineering, National Institute of Technology, Toyota College, 2-1 Eiseicho, Toyota, Aichi 471-8525, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
4
|
Ikemoto Y, Harada Y, Tanaka M, Nishimura SN, Murakami D, Kurahashi N, Moriwaki T, Yamazoe K, Washizu H, Ishii Y, Torii H. Infrared Spectra and Hydrogen-Bond Configurations of Water Molecules at the Interface of Water-Insoluble Polymers under Humidified Conditions. J Phys Chem B 2022; 126:4143-4151. [PMID: 35639685 PMCID: PMC9189834 DOI: 10.1021/acs.jpcb.2c01702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidating the state of interfacial water, especially the hydrogen-bond configurations, is considered to be key for a better understanding of the functions of polymers that are exhibited in the presence of water. Here, an analysis in this direction is conducted for two water-insoluble biocompatible polymers, poly(2-methoxyethyl acrylate) and cyclic(poly(2-methoxyethyl acrylate)), and a non-biocompatible polymer, poly(n-butyl acrylate), by measuring their IR spectra under humidified conditions and by carrying out theoretical calculations on model complex systems. It is found that the OH stretching bands of water are decomposed into four components, and while the higher-frequency components (with peaks at ∼3610 and ∼3540 cm-1) behave in parallel with the C═O and C-O-C stretching and CH deformation bands of the polymers, the lower-frequency components (with peaks at ∼3430 and ∼3260 cm-1) become pronounced to a greater extent with increasing humidity. From the theoretical calculations, it is shown that the OH stretching frequency that is distributed from ∼3650 to ∼3200 cm-1 is correlated to the hydrogen-bond configurations and is mainly controlled by the electric field that is sensed by the vibrating H atom. By combining these observed and calculated results, the configurations of water at the interface of the polymers are discussed.
Collapse
Affiliation(s)
- Yuka Ikemoto
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaru Tanaka
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-Nosuke Nishimura
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Institute for Material Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoya Kurahashi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Moriwaki
- Spectroscopy Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kosuke Yamazoe
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
5
|
Yasoshima N, Ishiyama T, Matubayasi N. Adsorption Energetics of Amino Acid Analogs on Polymer/Water Interfaces Studied by All-Atom Molecular Dynamics Simulation and a Theory of Solutions. J Phys Chem B 2022; 126:4389-4400. [PMID: 35653506 DOI: 10.1021/acs.jpcb.2c01297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Energetics of adsorption was addressed with all-atom molecular dynamics simulation on the interfaces of poly(2-methoxyethyl acrylate) (PMEA), poly(methyl methacrylate) (PMMA), and poly(butyl acrylate) (PBA) with water. A wide variety of adsorbate solutes were examined, and the free energy of adsorption was computed with the method of energy representation. It was found that the adsorption free energy was favorable (negative) for all the combinations of solute and polymer, and among PMEA, PMMA, and PBA, the strongest adsorption was observed on PMMA for the hydrophobic solutes and on PMEA for the hydrophilic ones. According to the decomposition of the adsorption free energy into the contributions from polymer and water, it was seen that the polymer contribution is larger in magnitude with the solute size. The total free energy of adsorption was correlated well with the solvation free energy in bulk water only for hydrophobic solutes. The roles of the intermolecular interaction components such as electrostatic, van der Waals, and excluded-volume were further studied, and the electrostatic component was influential only in determining the polymer dependences of the adsorption propensities of hydrophilic solutes. The extent of adsorption was shown to be ranked by the van der Waals component in the solute-polymer interaction separately over the hydrophilic and hydrophobic solutes, with the excluded-volume effect from water pointed out to also drive the adsorption.
Collapse
Affiliation(s)
- Nobuhiro Yasoshima
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
GEMMEI-IDE M, KAGAYA S. Mid-infrared Spectroscopic Analysis of Water Structure in Solid Polymers. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gore M, Narvekar A, Bhagwat A, Jain R, Dandekar P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. J Mater Chem B 2021; 10:143-169. [PMID: 34913462 DOI: 10.1039/d1tb01449h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cryopreservation is a process used for the storage of mammalian cells at a very low temperature, in a state of 'suspended animation.' Highly effective and safe macromolecular cryoprotectants (CPAs) have gained significant attention as they obviate the toxicity of conventional CPAs like dimethyl sulfoxide (DMSO) and reduce the risks involved in the storage of cultures at liquid nitrogen temperatures. These agents provide cryoprotection through multiple mechanisms, involving extracellular and intracellular macromolecular crowding, thereby impacting the biophysical and biochemical dynamics of the freezing medium and the cryopreserved cells. These CPAs vary in their structures and physicochemical properties, which influence their cryoprotective activities. Moreover, the introduction of polymeric crowders in the cryopreservation media enables serum-free storage at low-DMSO concentrations and high-temperature vitrification of frozen cultures (-80 °C). This review highlights the need for macromolecular CPAs and describes their mechanisms of cryopreservation, by elucidating the role of crowding effects. It also classifies the macromolecules based on their chemistry and their structure-activity relationships. Furthermore, this article provides perspectives on the factors that may influence the outcomes of the cell freezing process or may help in designing and evaluating prospective macromolecules. This manuscript also includes case studies about cellular investigations that have been conducted to demonstrate the cryoprotective potential of macromolecular CPAs. Ultimately, this review provides essential directives that will further improve the cell cryopreservation process and may encourage the use of macromolecular CPAs to fortify basic, applied, and translational research.
Collapse
Affiliation(s)
- Manish Gore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Advait Bhagwat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
8
|
Yasoshima N, Ishiyama T, Gemmei-Ide M, Matubayasi N. Molecular Structure and Vibrational Spectra of Water Molecules Sorbed in Poly(2-methoxyethylacrylate) Revealed by Molecular Dynamics Simulation. J Phys Chem B 2021; 125:12095-12103. [PMID: 34677976 DOI: 10.1021/acs.jpcb.1c07342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Molecular dynamics (MD) simulations of water sorption in poly(2-methoxyethylacrylate) (PMEA) are carried out to elucidate the hydrogen bonding (H-bonding) structures of the water molecules and the side chains of PMEA. A PMEA model incorporating lone-pair virtual sites on the carbonyl and methoxy oxygens of the side chain of PMEA, which are the key interaction sites in a biocompatible polymer, is newly developed. The PMEA model well reproduces the experimentally observed features in the infrared spectra of the hydrated polymer, as well as the radial distribution function of the water molecules in contact with the polymer, as calculated by ab initio MD simulations. The MD simulation results reveal that water molecules tend to form H-bonds with the carbonyl oxygen and the methoxy oxygen of the side chain of PMEA simultaneously, which enhance the "head-to-tail" stacking structure of the side chains at a low concentration range of water. Further penetration of water into the PMEA structure gradually increases the water-water H-bonding state and promotes the formation of water clusters even below the equilibrium water content.
Collapse
Affiliation(s)
- Nobuhiro Yasoshima
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Makoto Gemmei-Ide
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
9
|
Iscen A, Forero-Martinez NC, Valsson O, Kremer K. Acrylic Paints: An Atomistic View of Polymer Structure and Effects of Environmental Pollutants. J Phys Chem B 2021; 125:10854-10865. [PMID: 34524824 PMCID: PMC8488938 DOI: 10.1021/acs.jpcb.1c05188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Most of the artwork
and cultural heritage objects are stored in
museums under conditions that are difficult to monitor. While advanced
technologies aim to control and prevent the degradation of cultural
heritage objects in line with preventive conservation measures, there
is much to be learned in terms of the physical processes that lead
to the degradation of the synthetic polymers that form the basis of
acrylic paints largely used in contemporary art. In museums, stored
objects are often exposed to temperature and relative humidity fluctuations
as well as airborne pollutants such as volatile organic compounds
(VOCs). The glass transition of acrylic paints is below room temperature;
while low temperatures may cause cracking, at high temperatures the
sticky surface of the paint becomes vulnerable to pollutants. Here
we develop fully atomistic models to understand the structure of two
types of acrylic copolymers and their interactions with VOCs and water.
The structure and properties of acrylic copolymers are slighlty modified
by incorporation of a monomer with a longer side chain. With favorable
solvation free energies, once absorbed, VOCs and water interact with
the polymer side chains to form hydrogen bonds. The cagelike structure
of the polymers prevents the VOCs and water to diffuse freely below
the glass transition temperature. In addition, our model forms the
foundation for developing mesoscopic and continuum models that will
allow us to access longer time and length scales to further our understanding
of the degradation of artwork.
Collapse
Affiliation(s)
- Aysenur Iscen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Omar Valsson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Mochizuki A, Oda Y, Miwa Y. Comparative study on water structures of poly(tetrahydrofurfuryl acrylate) and poly(2-hydroxyethyl methacrylate) by nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1754-1769. [PMID: 34075853 DOI: 10.1080/09205063.2021.1938356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is well known that poly(2-methoxyethyl acrylate) (PMEA) has good blood compatibility and its performance is attributed to its water structure. Recently, we applied solution nuclear magnetic resonance spectroscopy (solution-NMR) for analyzing the water structure in PMEA at ambient temperature and concluded that this method is useful because of the clear observation of the resonance peaks at low and high magnetic field (downfield and upfield, respectively) areas indicating the existence of more than two types of water. The present study was performed to compare the water structure of poly(tetrahydrofurfuryl acrylate) (PTHFA) and poly(2-hydroxyethyl methacrylate) (PHEMA) using solution 2H-NMR and deuterium oxide as water at the temperature range 15-45 °C. It was found that PTHFA has a different water structure from that of PHEMA. Water in PTHFA clearly showed two resonance peaks at downfield and upfield areas, with different spin-lattice relaxation times, T12H (high and low values, respectively). These observations are similar to those of PMEA. In contrast, PHEMA showed only one broad resonance peak (at downfield) with a low T12H value. Based on these observations, this study discusses the effect of water structures on the blood compatibility of these polymers.
Collapse
Affiliation(s)
- Akira Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Yoshiki Oda
- Technology Joint Management Office of Tokai University, Hiratsuka, Kanagawa, Japan
| | - Yuko Miwa
- Toray Research Center Inc., Otsu, Shiga, Japan
| |
Collapse
|
11
|
Kuo AT, Urata S, Koguchi R, Sonoda T, Kobayashi S, Tanaka M. Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study. ACS Biomater Sci Eng 2021; 7:2383-2391. [PMID: 33979126 DOI: 10.1021/acsbiomaterials.1c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydration states of polymers are known to directly influence the adsorption of biomolecules. Particularly, intermediate water (IW) has been found able to prevent protein adsorption. Experimental studies have examined the IW content and nonthrombogenicity of poly(2-methoxyethyl acrylate) analogues with different side-chain spacings and lengths, which are HPx (x is the number of backbone carbons in a monomer) and PMCyA (y is the number of carbons in-between ester and ether oxygens of the side-chain) series, respectively. HPx was reported to possess more IW content but lower nonthrombogenicity compared to PMCyA with analogous composition. To understand the reason for the conflict, molecular dynamics simulations were conducted to elucidate the difference in the properties between the HPx and PMCyA. Simulation results showed that the presence of more methylene groups in the side chain more effectively prohibits water penetration in the polymer than those in the polymer backbone, causing a lower IW content in the PMCyA. At a high water content, the methoxy oxygen in the shorter side chain of the HPx cannot effectively bind water compared to that in the PMCyA side chain. HPx side chains may have more room to contact with molecules other than water (e.g., proteins), causing experimentally less nonthrombogenicity of HPx than that of PMCyA. In summary, theoretical simulations successfully explained the difference in the effects of side-chain spacing and length in atomistic scale.
Collapse
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Kuo AT, Urata S, Koguchi R, Sonoda T, Kobayashi S, Tanaka M. Molecular Dynamics Study on the Water Mobility and Side-Chain Flexibility of Hydrated Poly(ω-methoxyalkyl acrylate)s. ACS Biomater Sci Eng 2020; 6:6690-6700. [PMID: 33320637 DOI: 10.1021/acsbiomaterials.0c01220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intermediate water (IW) is known to play an important role in the antifouling property of biocompatible polymers. However, how IW prevents protein adsorption is still unclear. To understand the role of IW in the antifouling mechanism, molecular dynamics simulation was used to investigate the dynamic properties of water and side-chains for hydrated poly(ω-methoxyalkyl acrylate)s (PMCxA, where x indicates the number of methylene carbons) with x = 1-6 and poly(n-butyl acrylate) (PBA) in this study. Since the polymers uptake more water than their equilibrium water content (EWC) at the polymer/water interface, we analyzed the hydrated polymers at a water content higher than that of EWC. It was found that the water molecules interacting with one polymer oxygen atom (BW1), of which most are IW molecules, in PMC2A exhibit the lowest mobility, while those in PBA and PMC1A show a higher mobility. The result was consistent with the expectation that the biocompatible polymer with a long-resident hydration layer possesses good antifouling property. Through the detailed analysis of side-chain binding with three different types of BW1 molecules, we found that the amount of side-chains simultaneously interacting with two BW1 molecules, which exhibit the highest flexibility among the three kinds of side-chains, is the lowest for PMC1A. The high mobility of BW1 is thus suggested as the main factor for the poor protein adsorption resistance of PMC1A even though it possesses enough IW content and relatively flexible side-chains. Contrarily, a maximum amount of side-chains simultaneously interacting with two BW1 molecules was found in the hydrated PMC3A. The moderate side-chain length of PMC3A allows side-chains to simultaneously interact with two BW1 molecules and minimizes the hydrophobic part attractively interacting with a protein at the polymer/water interface. The unique structure of PMC3A may be the reason causing the best protein adsorption resistance among the PMCxAs.
Collapse
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Kuo AT, Sonoda T, Urata S, Koguchi R, Kobayashi S, Tanaka M. Elucidating the Feature of Intermediate Water in Hydrated Poly(ω-methoxyalkyl acrylate)s by Molecular Dynamics Simulation and Differential Scanning Calorimetry Measurement. ACS Biomater Sci Eng 2020; 6:3915-3924. [DOI: 10.1021/acsbiomaterials.0c00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 221-8755, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 221-8755, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Mochizuki A, Miwa Y, Yahata C, Ono D, Oda Y, Kawaguchi T. Water structure of poly(2-methoxyethyl acrylate) observed by nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1024-1040. [DOI: 10.1080/09205063.2020.1738042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Akira Mochizuki
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Yuko Miwa
- Material Science Laboratories, Toray Research Center, Otsu, Shiga, Japan
| | - Chie Yahata
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Dai Ono
- Department of Bio-Medical Engineering, School of Engineering, Tokai University, Isehara, Kanagawa, Japan
| | - Yoshinobu Oda
- Technology Joint Management Office of Tokai University, Hiratsuka, Kanagawa, Japan
| | - Tsubasa Kawaguchi
- Technology Joint Management Office of Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
15
|
Analyses of equilibrium water content and blood compatibility for Poly(2-methoxyethyl acrylate) by molecular dynamics simulation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Kishinaka S, Morita A, Ishiyama T. Molecular structure and vibrational spectra at water/poly(2-methoxyethylacrylate) and water/poly(methyl methacrylate) interfaces: A molecular dynamics simulation study. J Chem Phys 2019; 150:044707. [DOI: 10.1063/1.5074144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sho Kishinaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
17
|
Wang Q, Huang X, Guo W, Cao Z. Synergy of orientational relaxation between bound water and confined water in ice cold-crystallization. Phys Chem Chem Phys 2019; 21:10293-10299. [DOI: 10.1039/c9cp01600g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dehydration/rehydration of some glycerol molecules provides the optimal path for ice cold-crystallization, wherein bound- and confined-water participate in a dynamically synergetic manner.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Physics
- Chinese Academy of Sciences Beijing
- China
| | - Xiao Huang
- Institute of Physics
- Chinese Academy of Sciences Beijing
- China
| | - Wei Guo
- Institute of Physics
- Chinese Academy of Sciences Beijing
- China
| | - Zexian Cao
- Institute of Physics
- Chinese Academy of Sciences Beijing
- China
- Songshan Lake Materials Laboratory
- Guangdong
| |
Collapse
|
18
|
Kobayashi S, Wakui M, Iwata Y, Tanaka M. Poly(ω-methoxyalkyl acrylate)s: Nonthrombogenic Polymer Family with Tunable Protein Adsorption. Biomacromolecules 2017; 18:4214-4223. [DOI: 10.1021/acs.biomac.7b01247] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shingo Kobayashi
- Institute
for Materials Chemistry and Engineering, Kyushu University, CE41
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miyuki Wakui
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yukihisa Iwata
- Department
of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Institute
for Materials Chemistry and Engineering, Kyushu University, CE41
744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|