1
|
Zheng M, Zhou C, Wang W, Kuang T, Shen J, Tian L. Origin of Energy Dissipation in the Oligomeric Fucoxanthin-Chlorophyll a/c Binding Proteins. J Phys Chem Lett 2023; 14:7967-7974. [PMID: 37647015 DOI: 10.1021/acs.jpclett.3c01633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Fucoxanthin-chlorophyll proteins (FCPs) are a family of photosynthetic light-harvesting complex (LHC) proteins found in diatoms. They efficiently capture photons and regulate their functions, ensuring diatom survival in highly fluctuating light. FCPs are present in different oligomeric states in vivo, but functional differences among these FCP oligomers are not yet fully understood. Here we characterized two types of antenna complexes (FCP-B/C dimers and FCP-A tetramers) that coexist in the marine centric diatom Chaetoceros gracilis using both time-resolved fluorescence and transient absorption spectroscopy. We found that the FCP-B/C complex did not show fluorescence quenching, whereas FCP-A was severely quenched, via an ultrafast excitation energy transfer (EET) pathway from Chl a Qy to the fucoxanthin S1/ICT state. These results highlight the functional differences between FCP dimers and tetramers and indicate that the EET pathway from Chl a to carotenoids is an energy dissipation mechanism conserved in a variety of photosynthetic organisms.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jianren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
3
|
West RG, Fuciman M, Staleva-Musto H, Šebelík V, Bína D, Durchan M, Kuznetsova V, Polívka T. Equilibration Dependence of Fucoxanthin S1 and ICT Signatures on Polarity, Proticity, and Temperature by Multipulse Femtosecond Absorption Spectroscopy. J Phys Chem B 2018; 122:7264-7276. [DOI: 10.1021/acs.jpcb.8b04217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Robert G. West
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Hristina Staleva-Musto
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Václav Šebelík
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Milan Durchan
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
West RG, Bína D, Fuciman M, Kuznetsova V, Litvín R, Polívka T. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:357-365. [DOI: 10.1016/j.bbabio.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/16/2018] [Accepted: 02/24/2018] [Indexed: 11/16/2022]
|
6
|
Staleva-Musto H, Kuznetsova V, West RG, Keşan G, Minofar B, Fuciman M, Bína D, Litvín R, Polívka T. Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the Carotenoid Fucoxanthin. J Phys Chem B 2018; 122:2922-2930. [PMID: 29469573 DOI: 10.1021/acs.jpcb.8b00743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We used ultrafast transient absorption spectroscopy to study excited-state dynamics of the keto-carotenoid fucoxanthin (Fx) and its two derivatives: 19'-butanoyloxyfucoxanthin (bFx) and 19'-hexanoyloxyfucoxanthin (hFx). These derivatives occur in some light-harvesting systems of photosynthetic microorganisms, and their presence is typically related to stress conditions. Even though the hexanoyl (butanoyl) moiety is not a part of the conjugated system of hFx (bFx), their absorption spectra in polar solvents exhibit more pronounced vibrational bands of the S2 state than for Fx. The effect of the nonconjugated acyloxy moiety is further observed in transient absorption spectra, which for Fx exhibit characteristic features of an intramolecular charge transfer (ICT) state in all polar solvents. For bFx and hFx, however, much weaker ICT features are detected in methanol, and the spectral markers of the ICT state disappear completely in polar, but aprotic acetonitrile. The presence of the acyloxy moiety also alters the lifetimes of the S1/ICT state. For Fx, the lifetimes are 60, 30, and 20 ps in n-hexane, acetonitrile, and methanol, whereas for bFx and hFx, these lifetimes yield 60, 60, and 40 ps, respectively. Testing the S1/ICT state lifetimes of hFx in other solvents revealed that some ICT features can be induced only in polar, protic solvents (methanol, ethanol, and ethylene glycol). Thus, bFx and hFx represent a rather rare example of a system in which a nonconjugated functional group significantly alters excited-state dynamics. By comparison with other carotenoids, we show that a keto group at the acyloxy tail, even though it is not in conjugation, affects the electron distribution along the conjugated backbone, resulting in the observed decrease of the ICT character of the S1/ICT state of bFx and hFx.
Collapse
Affiliation(s)
- Hristina Staleva-Musto
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - Robert G West
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - Gürkan Keşan
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Department of Chemistry, Faculty of Science , Gebze Technical University , 41400 Gebze , Kocaeli , Turkey
| | - Babak Minofar
- Center for Nanobiology and Structural Biology, Institute of Microbiology , Czech Academy of Sciences , CZ 373 33 Nové Hrady , Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic
| | - David Bína
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Institute of Plant Molecular Biology, Biological Centre , Czech Academy of Sciences , CZ 370 05 České Budějovice , Czech Republic
| | - Radek Litvín
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Institute of Plant Molecular Biology, Biological Centre , Czech Academy of Sciences , CZ 370 05 České Budějovice , Czech Republic
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branišovská 1760 , CZ 370 05 České Budějovice , Czech Republic.,Institute of Plant Molecular Biology, Biological Centre , Czech Academy of Sciences , CZ 370 05 České Budějovice , Czech Republic
| |
Collapse
|