1
|
Lu H, Chen R, He MW, Liu H, Xue YH. A possible strategy for generating polymer chains with an entanglement-free structure. SOFT MATTER 2022; 18:6888-6898. [PMID: 36043893 DOI: 10.1039/d2sm00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We propose a possible strategy that may experimentally generate long polymeric chains with an entanglement-free structure. The basic idea is designing the conditions to restrict polymer chains from growing along the surface with an obviously concave curvature. This strategy is proved to effectively reduce the chance of forming both inter- and intra-molecular entanglements, which is quite similar to the self-avoiding random walking of chains on a two dimensional plane. We believe that this kind of chain growth strategy may supply a kind of possible explanation on the formation of the entanglement-free structure of chromosomes, which also have tremendously large molecular weight. Besides, this study also guides experimentalists on synthesizing specific entanglement-free functional polymeric or biological materials.
Collapse
Affiliation(s)
- Hui Lu
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China.
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ran Chen
- College of Chemistry, Jilin University, Changchun, 130023, China
| | - Min-Wei He
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China.
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yao-Hong Xue
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China.
| |
Collapse
|
2
|
Zhou J, Wang Q, Jia C, Innocent MT, Pan W, Xiang H, Zhu M. Molecular Weight Discrete Distribution-Induced Orientation of High-Strength Copolyamide Fibers: Effects of Component Proportion and Molecular Weight. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jialiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qianqian Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weinan Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Wang F, Jiang Z, Lin X, Zhang C, Tanaka K, Zuo B, Zhang W, Wang X. Suppressed Chain Entanglement Induced by Thickness of Ultrathin Polystyrene Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fengliang Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenwei Jiang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuanyu Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cuiyun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Keiji Tanaka
- Department of Applied Chemistry and Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Jo KI, Oh Y, Kim TH, Bang J, Yuan G, Satija SK, Sung BJ, Koo J. Position-Dependent Diffusion Dynamics of Entangled Polymer Melts Nanoconfined by Parallel Immiscible Polymer Films. ACS Macro Lett 2020; 9:1483-1488. [PMID: 35653667 PMCID: PMC10483881 DOI: 10.1021/acsmacrolett.0c00608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The morphological structure and dynamics of confined polymers adjacent to the polymer-polymer interface have a profound effect on determining the overall physical properties of polymer blends. We measured the diffusion dynamics of poly(methyl methacrylate) (PMMA) melts confined between polystyrene (PS) layers using neutron reflectivity. Combinations of various thicknesses of PMMA and deuterated PMMA (dPMMA) allowed us to experimentally reveal the nonmonotonic behavior of polymer mobility near the PS-PMMA interface. From the neutron reflectivity results, we found that the polymers adjacent to the immiscible polymer-polymer interface showed enhanced diffusion dynamics because of the repulsive interaction between PS and PMMA, whereas the polymer at local regions farther from the interface exhibited reduced dynamics. This is probably due to the nonspherical conformation of PMMA and spatial confinement near the PS-PMMA interface.
Collapse
Affiliation(s)
- Kyoung-Il Jo
- Neutron Science Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Younghoon Oh
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 04107, Korea
| | - Tae-Ho Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Guangcui Yuan
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Sushil K. Satija
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Bong June Sung
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 04107, Korea
| | - Jaseung Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
5
|
Lee S, Frank CW, Yoon DY. Interface Characteristics of Neat Melts and Binary Mixtures of Polyethylenes from Atomistic Molecular Dynamics Simulations. Polymers (Basel) 2020; 12:polym12051059. [PMID: 32384644 PMCID: PMC7284576 DOI: 10.3390/polym12051059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular dynamics simulations of free-standing thin films of neat melts of polyethylene (PE) chains up to C150H302 and their binary mixtures with n-C13H28 are performed employing a united atom model. We estimate the surface tension values of PE melts from the atomic virial tensor over a range of temperatures, which are in good agreement with experimental results. Compared with short n-alkane systems, there is an enhanced surface segregation of methyl chain ends in longer PE chains. Moreover, the methyl groups become more segregated in the surface region with decreasing temperature, leading to the conclusion that the surface-segregation of methyl chain ends mainly arises from the enthalpic origin attributed to the lower cohesive energy density of terminal methyl groups. In the mixtures of two different chain lengths, the shorter chains are more likely to be found in the surface region, and this molecular segregation in moderately asymmetric mixtures in the chain length (C13H28 + C44H90) is dominated by the enthalpic effect of methyl chain ends. Such molecular segregation is further enhanced and dominated by the entropic effect of conformational constraints in the surface for the highly asymmetric mixtures containing long polymer chains (C13H28 + C150H3020). The estimated surface tension values of the mixtures are consistent with the observed molecular segregation characteristics. Despite this molecular segregation, the normalized density of methyl chain ends of the longer chain is more strongly enhanced, as compared with the all-segment density of the longer chain itself, in the surface region of melt mixtures. In addition, the molecular segregation results in higher order parameter of the shorter-chain segments at the surface and deeper persistence of surface-induced segmental order into the film for the longer chains, as compared with those in neat melt films.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Chemistry, Gachon University, Seongnam 13120, Gyunggido, Korea;
| | - Curtis W. Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Do Y. Yoon
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
- Correspondence:
| |
Collapse
|
6
|
Li S, Ding M, Shi T. Spatial distribution of entanglements and dynamics in polymer films confined by smooth walls. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Li S, Chen Q, Ding M, Shi T. Effect of Bidispersity on Dynamics of Confined Polymer Films. Polymers (Basel) 2018; 10:E1327. [PMID: 30961252 PMCID: PMC6402039 DOI: 10.3390/polym10121327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Using Monte Carlo simulations, we studied the effect of bidispersity on the dynamics of polymer films capped between two neutral walls, where we chose three representative compositions for bidispersed polymer films. Our results demonstrate that the characteristic entanglement length is an important parameter to clarify the effect of the bidispersity on the dynamics of polymer films. For the short chains, shorter than the characteristic entanglement length, the average number of near-neighboring particles increases with the decrease of the film thickness and limits the diffusivity of the short chains, which is independent of the film compositions. However, the dynamics of the long chains, of which is above the characteristic entanglement length, is determined by the film's composition. In our previous paper, we inferred from the structures and entanglements of the bidisperse system with short and long chains that the constraint release contributes significantly to the relaxation mechanism of long chains. By calculating the self-diffusion coefficient of long chains, we confirmed this prediction that, with a lower weight fraction of long chains, the self-diffusion coefficient of long chains decreases slowly with the decrease of the film thickness, which is similar to that of short chains. With a higher weight fraction of long chains, the competition between the disentanglement and the increased in the local degree of confinement which resulted in the self-diffusion coefficient of long chains varying non-monotonically with the film thickness. Furthermore, for the bidisperse system with long and long chains, the diffusivity of long chains was not affected by the constraint release, which varied nonmonotonically with the decrease of the film thickness due to the competition between the disentanglement and the enhanced confinement. Herein, compared with the previous work, we completely clarified the relationship between the structures and dynamics for three representative compositions of bidisperse polymer films, which contains all possible cases for bidisperse systems. Our work not only establishes a unified understanding of the dependency of dynamics on the bidispersity of polymer films, but also helps to understand the case of polydispersity, which can provide computational supports for various applications for polymer films.
Collapse
Affiliation(s)
- Sijia Li
- Department of Fire Command, China People's Police University, Langfang 065000, China.
| | - Qiaoyue Chen
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China.
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|