1
|
Chen H, Falling LJ, Kersell H, Yan G, Zhao X, Oliver-Meseguer J, Jaugstetter M, Nemsak S, Hunt A, Waluyo I, Ogasawara H, Bell AT, Sautet P, Salmeron M. Elucidating the active phases of CoO x films on Au(111) in the CO oxidation reaction. Nat Commun 2023; 14:6889. [PMID: 37898599 PMCID: PMC10613203 DOI: 10.1038/s41467-023-42301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023] Open
Abstract
Noble metals supported on reducible oxides, like CoOx and TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOx supported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOx catalyst as a function of reactant gas phase CO/O2 stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0 were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+ form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+ species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+ sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.
Collapse
Affiliation(s)
- Hao Chen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lorenz J Falling
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heath Kersell
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Zhao
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Judit Oliver-Meseguer
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Max Jaugstetter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Slavomir Nemsak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics and Astronomy, University of California, Davis, CA, 95616, USA
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Elucidating the Morphology Effect of Pt Nanocrystals on Pt/CNT-USY Catalysts for Selective Ring Opening of Decalin. Catal Letters 2022. [DOI: 10.1007/s10562-022-04118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Wang D, Lin L, Zhang R, Mu R, Fu Q. Stabilizing Oxide Nanolayer via Interface Confinement and Surface Hydroxylation. J Phys Chem Lett 2022; 13:6566-6570. [PMID: 35833718 DOI: 10.1021/acs.jpclett.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface hydroxylation over oxide catalysts often occurs in many catalytic processes involving H2 and H2O, which is considered to play an important role in elementary steps of the reactions. Here, monolayer CoO and CoOHx nanoislands on Pt(111) are used as inverse model catalysts to study the effect of surface hydroxylation on the stability of Co oxide overlayers in O2. Surface science experiments indicate that hydroxyl groups formed on CoO nanoislands produced by deuterium-spillover can enhance oxidation resistance of the Co oxide nanostructures. Theoretical calculation shows that the interfacial adhesion between CoO and Pt is linearly strengthened with the increasing hydroxylation degree of CoO surface. Thus, the interface confinement effect between CoO and Pt can be enhanced by the surface hydroxylation due to the more reduced Co ions and stronger Co-Pt bonding at the CoOHx/Pt interface.
Collapse
Affiliation(s)
- Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
4
|
Rattigan E, Sun Z, Gallo T, Nino MA, Parreiras SDO, Martín-Fuentes C, Martin-Romano JC, Écija D, Escudero C, Villar I, Rodríguez-Fernández J, Lauritsen JV. The cobalt oxidation state in preferential CO oxidation on CoO x/Pt(111) investigated by operando X-ray photoemission spectroscopy. Phys Chem Chem Phys 2022; 24:9236-9246. [PMID: 35388844 DOI: 10.1039/d2cp00399f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The combination of a reducible transition metal oxide and a noble metal such as Pt often leads to active low-temperature catalysts for the preferential oxidation of CO in excess H2 gas (PROX reaction). While CO oxidation has been investigated for such systems in model studies, the added influence of hydrogen gas, representative of PROX, remains less explored. Herein, we use ambient pressure scanning tunneling microscopy and ambient pressure X-ray photoelectron spectroscopy on a CoOx/Pt(111) planar model catalyst to analyze the active phase and the adsorbed species at the CoOx/Pt(111) interface under atmospheres of CO and O2 with a varying partial pressure of H2 gas. By following the evolution of the Co oxidation state as the catalyst is brought to a reaction temperature of above 150 °C, we determine that the active state is characterized by the transformation from planar CoO with Co in the 2+ state to a mixed Co2+/Co3+ phase at the temperature where CO2 production is first observed. Furthermore, our spectroscopy observations of the surface species suggest a reaction pathway for CO oxidation, proceeding from CO exclusively adsorbed on Co2+ sites reacting with the lattice O from the oxide. Under steady state CO oxidation conditions (CO/O2), the mixed oxide phase is replenished from oxygen incorporating into cobalt oxide nanoislands. In CO/O2/H2, however, the onset of the active Co2+/Co3+ phase formation is surprisingly sensitive to the H2 pressure, which we explain by the formation of several possible hydroxylated intermediate phases that expose both Co2+ and Co3+. This variation, however, has no influence on the temperature where CO oxidation is observed. Our study points to the general importance of a dynamic reducibility window of cobalt oxide, which is influenced by hydroxylation, and the bonding strength of CO to the reduced oxide phase as important parameters for the activity of the system.
Collapse
Affiliation(s)
- Eoghan Rattigan
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Tamires Gallo
- Synchrotron Radiation Research, Lund University, Sölvegatan 14, 223 62 Lund, Sweden
| | - Miguel Angel Nino
- IMDEA Nanoscience Institute, Ciudad Universitaria de Cantoblanco, Calle Faraday 9, 28049, Madrid, Spain.,ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | | | - Cristina Martín-Fuentes
- IMDEA Nanoscience Institute, Ciudad Universitaria de Cantoblanco, Calle Faraday 9, 28049, Madrid, Spain
| | - Juan Carlos Martin-Romano
- IMDEA Nanoscience Institute, Ciudad Universitaria de Cantoblanco, Calle Faraday 9, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience Institute, Ciudad Universitaria de Cantoblanco, Calle Faraday 9, 28049, Madrid, Spain
| | - Carlos Escudero
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | - Ignacio Villar
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | | | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|
5
|
Sánchez-Grande A, Nguyën HC, Lauwaet K, Rodríguez-Fernández J, Carrasco E, Cirera B, Sun Z, Urgel JI, Miranda R, Lauritsen JV, Gallego JM, López N, Écija D. Electrically Tunable Reactivity of Substrate-Supported Cobalt Oxide Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106407. [PMID: 35064636 DOI: 10.1002/smll.202106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
First-row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α-region), while the less abundant is 1Co:1Au coincidental (β-region). As a result of the surface registry, in the β-region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip-induced voltage pulses irreversibly transform α- into β-regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.
Collapse
Affiliation(s)
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, 43007, Spain
| | | | | | | | | | - Zhaozong Sun
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, DK-8000, Denmark
| | | | - Rodolfo Miranda
- IMDEA Nanociencia., Madrid, 28049, Spain
- Dep. Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, DK-8000, Denmark
| | - José M Gallego
- Instituto de Ciencias Materiales - CSIC, Cantoblanco, Madrid, 28049, Spain
| | - Nuria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, 43007, Spain
| | | |
Collapse
|
6
|
Gajdek D, Olsson PAT, Blomberg S, Gustafson J, Carlsson PA, Haase D, Lundgren E, Merte LR. Structural Changes in Monolayer Cobalt Oxides under Ambient Pressure CO and O 2 Studied by In Situ Grazing-Incidence X-ray Absorption Fine Structure Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3411-3418. [PMID: 35242268 PMCID: PMC8883796 DOI: 10.1021/acs.jpcc.1c10284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O2, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O2-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study. Instead, the spectra acquired at low temperatures suggest formation of cobalt hydroxide and oxyhydroxide. At higher temperatures, the spectra indicate dewetting of the film and suggest formation of bulklike Co3O4 under oxidizing conditions. The experiments demonstrate the power of hard X-ray spectroscopy to probe the structures of well-defined oxide monolayers on metal single crystals under realistic catalytic conditions.
Collapse
Affiliation(s)
- Dorotea Gajdek
- Department
of Materials Science and Applied Mathematics, Malmö University, SE-211 19 Malmö, Sweden
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Pär A. T. Olsson
- Department
of Materials Science and Applied Mathematics, Malmö University, SE-211 19 Malmö, Sweden
- Division
of Mechanics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Sara Blomberg
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- Department
of Chemical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Johan Gustafson
- Division
of Synchrotron Radiation Research, Lund
University, Box 118, SE-221
00 Lund, Sweden
| | - Per-Anders Carlsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
- Competence
Centre for Catalysis, Chalmers University
of Technology, SE-412 96 Göteborg, Sweden
| | - Dörthe Haase
- MAX
IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Edvin Lundgren
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- Division
of Synchrotron Radiation Research, Lund
University, Box 118, SE-221
00 Lund, Sweden
| | - Lindsay R. Merte
- Department
of Materials Science and Applied Mathematics, Malmö University, SE-211 19 Malmö, Sweden
- NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
Sun Z, Lauritsen JV. A versatile electrochemical cell for hanging meniscus or flow cell measurement of planar model electrodes characterized with scanning tunneling microscopy and x-ray photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:094101. [PMID: 34598512 DOI: 10.1063/5.0060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate the development of a portable electrochemistry (EC) cell setup that can be applied to measure relevant electrochemical signals on planar samples in conjunction with pre- and post-characterization by surface science methods, such as scanning tunneling microscopy and x-ray photoelectron spectroscopy. The EC cell setup, including the transfer and EC cell compartments, possesses the advantage of a small size and can be integrated with standard ultra-high vacuum (UHV) systems or synchrotron end-stations by replacing the flange adaptor, sample housing, and transfer arm. It allows a direct transfer of the pre-characterized planar sample from the UHV environment to the EC cell to conduct in situ electrochemical measurements without exposing to ambient air. The EC cell setup can operate in both the hanging meniscus and flow cell mode. As a proof of concept, using a Au(111) single crystal electrode, we demonstrate the application of the EC cell setup in both modes and report on the post-EC structure and chemical surface composition as provided by scanning tunneling microscopy and x-ray photoelectron spectroscopy. To exemplify the advantage of an in situ EC cell, the EC cell performance is further compared to a corresponding experiment on a Au(111) sample measured by transfer at ambient conditions. The EC cell demonstrated here enables a wealth of future electrocatalysis measurements that combine surface science model catalyst approaches to facilitate the understanding of nano- and atomic-scale structures of electrocatalytic interfaces, the crucial role of catalyst stability, and the nature of low-concentration and atomically dispersed metal (single atom) dopants.
Collapse
Affiliation(s)
- Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
8
|
Prabhu MK, Groot IMN. Simultaneous sulfidation of Mo and Co oxides supported on Au(111). Phys Chem Chem Phys 2021; 23:8403-8412. [PMID: 33876004 DOI: 10.1039/d0cp03481a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present the results of a study carried out to investigate the simultaneous sulfidation of Co and Mo oxide nanoparticles on Au(111) as a synthesis strategy to prepare a model catalyst for hydrodesulfurization (HDS). We make use of scanning tunneling microscopy and X-ray photoelectron spectroscopy to track the changes in morphology and chemistry during the synthesis of a mixed Mo and Co oxide precursor and the sulfidation thereafter, to the respective sulfides. We investigated the effects of temperature and the duration of sulfidation on the completeness of the sulfidation process. Our study shows that the formation of MoS2 with the CoMoS edge (the desired model catalyst) is not affected by the time or the temperature of sulfidation. However, the yield of the Co-promoted MoS2 slabs is limited by the formation of large clusters due to the spreading of Mo and Co oxide phases upon sulfidation. Complete sulfidation of the mixed oxide precursor to Co-promoted MoS2 can be accelerated by increasing the sulfidation temperature to 730 K due to the thermally activated nature of Mo oxide sulfidation. Thus, we demonstrate that using a mixed Mo and Co oxide precursor as a starting point for the Co-promoted MoS2 phase for fundamental catalytic studies is a viable strategy.
Collapse
Affiliation(s)
- M K Prabhu
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
9
|
Kersell H, Hooshmand Z, Yan G, Le D, Nguyen H, Eren B, Wu CH, Waluyo I, Hunt A, Nemšák S, Somorjai G, Rahman TS, Sautet P, Salmeron M. CO Oxidation Mechanisms on CoOx-Pt Thin Films. J Am Chem Soc 2020; 142:8312-8322. [DOI: 10.1021/jacs.0c01139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heath Kersell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zahra Hooshmand
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Huy Nguyen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Baran Eren
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheng Hao Wu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gabor Somorjai
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Talat S. Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Miquel Salmeron
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Jiang Y, Zhu Y, Zhou D, Jiang Z, Si N, Stacchiola D, Niu T. Reversible oxidation and reduction of gold-supported iron oxide islands at room temperature. J Chem Phys 2020; 152:074710. [PMID: 32087652 DOI: 10.1063/1.5136279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Monolayer iron oxides grown on metal substrates have widely been used as model systems in heterogeneous catalysis. By means of ambient-pressure scanning tunneling microscopy (AP-STM), we studied the in situ oxidation and reduction of FeO(111) grown on Au(111) by oxygen (O2) and carbon monoxide (CO), respectively. Oxygen dislocation lines present on FeO islands are highly active for O2 dissociation. X-ray photoelectron spectroscopy measurements distinctly reveal the reversible oxidation and reduction of FeO islands after sequential exposure to O2 and CO. Our AP-STM results show that excess O atoms can be further incorporated on dislocation lines and react with CO, whereas the CO is not strong enough to reduce the FeO supported on Au(111) that is essential to retain the activity of oxygen dislocation lines.
Collapse
Affiliation(s)
- Yixuan Jiang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| | - Yaguang Zhu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Dechun Zhou
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| | - Zhao Jiang
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Nan Si
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| | - Dario Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Tianchao Niu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200, Xiaolingwei 210094, China
| |
Collapse
|
11
|
Rodríguez-Fernández J, Sun Z, Zhang L, Tan T, Curto A, Fester J, Vojvodic A, Lauritsen JV. Structural and electronic properties of Fe dopants in cobalt oxide nanoislands on Au(111). J Chem Phys 2019; 150:041731. [DOI: 10.1063/1.5052336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Zhaozong Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Liang Zhang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ting Tan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anthony Curto
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jakob Fester
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeppe V. Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
|
13
|
Faisal F, Stumm C, Bertram M, Waidhas F, Lykhach Y, Cherevko S, Xiang F, Ammon M, Vorokhta M, Šmíd B, Skála T, Tsud N, Neitzel A, Beranová K, Prince KC, Geiger S, Kasian O, Wähler T, Schuster R, Schneider MA, Matolín V, Mayrhofer KJJ, Brummel O, Libuda J. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. NATURE MATERIALS 2018; 17:592-598. [PMID: 29867166 DOI: 10.1038/s41563-018-0088-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1-3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.
Collapse
Affiliation(s)
- Firas Faisal
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Corinna Stumm
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manon Bertram
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Waidhas
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yaroslava Lykhach
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Serhiy Cherevko
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
| | - Feifei Xiang
- Lehrstuhl für Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Ammon
- Lehrstuhl für Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mykhailo Vorokhta
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic
| | - Břetislav Šmíd
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic
| | - Nataliya Tsud
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic
| | - Armin Neitzel
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klára Beranová
- Elettra-Sincrotrone Trieste SCpA, Basovizza-Trieste, Italy
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste SCpA, Basovizza-Trieste, Italy
| | - Simon Geiger
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Olga Kasian
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
| | - Tobias Wähler
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Schuster
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Alexander Schneider
- Lehrstuhl für Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Vladimír Matolín
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic
| | - Karl J J Mayrhofer
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Erlangen, Germany
| | - Olaf Brummel
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Jörg Libuda
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|