1
|
Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Protein Conformational Space at the Edge of Allostery: Turning a Non-allosteric Malate Dehydrogenase into an "Allosterized" Enzyme using Evolution Guided Punctual Mutations. Mol Biol Evol 2022; 39:6691310. [PMID: 36056899 PMCID: PMC9486893 DOI: 10.1093/molbev/msac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
2
|
Fujiwara S. Dynamical Behavior of Disordered Regions in Disease-Related Proteins Revealed by Quasielastic Neutron Scattering. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:795. [PMID: 35744058 PMCID: PMC9230977 DOI: 10.3390/medicina58060795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Background and Objectives: Intrinsically disordered proteins (IDPs) and proteins containing intrinsically disordered regions (IDRs) are known to be involved in various human diseases. Since the IDPs/IDRs are fluctuating between many structural substrates, the dynamical behavior of the disease-related IDPs/IDRs needs to be characterized to elucidate the mechanisms of the pathogenesis of the diseases. As protein motions have a hierarchy ranging from local side-chain motions, through segmental motions of loops or disordered regions, to diffusive motions of entire molecules, segmental motions, as well as local motions, need to be characterized. Materials and Methods: Combined analysis of quasielastic neutron scattering (QENS) spectra with the structural data provides information on both the segmental motions and the local motions of the IDPs/IDRs. Here, this method is applied to re-analyze the QENS spectra of the troponin core domain (Tn-CD), various mutants of which cause the pathogenesis of familial cardiomyopathy (FCM), and α-synuclein (αSyn), amyloid fibril formation of which is closely related to the pathogenesis of Parkinson's disease, collected in the previous studies. The dynamical behavior of wild-type Tn-CD, FCM-related mutant Tn-CD, and αSyn in the different propensity states for fibril formation is characterized. Results: In the Tn-CD, the behavior of the segmental motions is shown to be different between the wild type and the mutant. This difference is likely to arise from changes in the intramolecular interactions, which are suggested to be related to the functional aberration of the mutant Tn-CD. In αSyn, concerted enhancement of the segmental motions and the local motions is observed with an increased propensity for fibril formation, suggesting the importance of these motions in fibril formation. Conclusions: Characterization of the segmental motions as well as the local motions is thus useful for discussing how the changes in dynamical behavior caused by the disease-related mutations and/or environmental changes could be related to the functional and/or behavioral aberrations of these proteins.
Collapse
Affiliation(s)
- Satoru Fujiwara
- Institute for Quantum Biology, National Institutes for Quantum Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
3
|
Tominaga T, Nakagawa H, Sahara M, Oda T, Inoue R, Sugiyama M. Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer. Life (Basel) 2022; 12:life12050675. [PMID: 35629343 PMCID: PMC9145923 DOI: 10.3390/life12050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding protein functions requires not only static but also dynamic structural information. Incoherent quasi-elastic neutron scattering (QENS), which utilizes the highly incoherent scattering ability of hydrogen, is a powerful technique for revealing the dynamics of proteins in deuterium oxide (D2O) buffer solutions. The background scattering of sample cells suitable for aqueous protein solution samples, conducted with a neutron backscattering spectrometer, was evaluated. It was found that the scattering intensity of an aluminum sample cell coated with boehmite using D2O was lower than that of a sample cell coated with regular water (H2O). The D2O-Boehmite coated cell was used for the QENS measurement of a 0.8 wt.% aqueous solution of an intrinsically disordered protein in an intrinsically disordered region of a helicase-associated endonuclease for a fork-structured type of DNA. The cell was inert against aqueous samples at 283–363 K. In addition, meticulous attention to cells with small individual weight differences and the positional reproducibility of the sample cell relative to the spectrometer neutron beam position enabled the accurate subtraction of the scattering profiles of the D2O buffer and the sample container. Consequently, high-quality information on protein dynamics could be extracted from dilute protein solutions.
Collapse
Affiliation(s)
- Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Ibaraki 319-1106, Japan;
- Correspondence:
| | - Hiroshi Nakagawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan;
- J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
| | - Masae Sahara
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Ibaraki 319-1106, Japan;
| | - Takashi Oda
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan;
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan; (R.I.); (M.S.)
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan; (R.I.); (M.S.)
| |
Collapse
|
4
|
Zheng L, Liu Z, Zhang Q, Li S, Huang J, Zhang L, Zan B, Tyagi M, Cheng H, Zuo T, Sakai VG, Yamada T, Yang C, Tan P, Jiang F, Chen H, Zhuang W, Hong L. Universal dynamical onset in water at distinct material interfaces. Chem Sci 2022; 13:4341-4351. [PMID: 35509458 PMCID: PMC9006901 DOI: 10.1039/d1sc04650k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Interfacial water remains liquid and mobile much below 0 °C, imparting flexibility to the encapsulated materials to ensure their diverse functions at subzero temperatures. However, a united picture that can describe the dynamical differences of interfacial water on different materials and its role in imparting system-specific flexibility to distinct materials is lacking. By combining neutron spectroscopy and isotope labeling, we explored the dynamics of water and the underlying substrates independently below 0 °C across a broad range of materials. Surprisingly, while the function-related anharmonic dynamical onset in the materials exhibits diverse activation temperatures, the surface water presents a universal onset at a common temperature. Further analysis of the neutron experiment and simulation results revealed that the universal onset of water results from an intrinsic surface-independent relaxation: switching of hydrogen bonds between neighboring water molecules with a common energy barrier of ∼35 kJ mol−1. We demonstrated that the dynamical onset of interfacial water is an intrinsic property of water itself, resulting from a surface independent relaxation process in water with an approximately universal energy barrier of ∼35 kJ mol−1.![]()
Collapse
Affiliation(s)
- Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Zhuo Liu
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043, China
| | - Song Li
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Zan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - He Cheng
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Taisen Zuo
- China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Science (CAS), Dongguan 523803, China
- Dongguan Institute of Neutron Science (DINS), Dongguan 523808, China
| | - Victoria García Sakai
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Science & Technology Facilities Council, Didcot OX11 0QX, UK
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Chenxing Yang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Tan
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Jiang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35000, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center), MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| |
Collapse
|
5
|
Tominaga T, Sahara M, Kawakita Y, Nakagawa H, Yamada T. Evaluation of sample cell materials for aqueous solutions used in quasi-elastic neutron scattering measurements. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721009687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
For quasi-elastic neutron scattering (QENS) studies, sample cells made of pure or alloyed aluminium are frequently employed. Although the Al surface is protected by a passivating film, this film is not robust. Therefore, when the sample is an aqueous solution, chemical interactions between the Al surface and sample, promoted by corrosive entities such as chloride ions and certain conditions of pH, can compromise the integrity of the cell and interfere with the experiment. In this study, the corrosion susceptibilities of Al and its alloys were investigated by subjecting them to various treatments; the results were compared with those of other candidate materials with low chemical reactivity. This work showed that alloys with higher Al content and boehmite-coated surfaces are resistant to corrosion. In particular, for Al, the resistance is due to a reduction in the contact area achieved by reducing the surface roughness. QENS measurements of empty sample cells made of these materials revealed two results: (1) the profile of the cell fabricated with a copper-free Al alloy showed a minor dependence on the scattering vector magnitude Q and (2) reducing the real surface area of Al effectively suppresses its scattering intensity, while boehmite coating strengthens the scattering. Cells fabricated with Mo, Nb and single-crystal sapphire can be used as alternatives to Al because of their low scattering intensity and reduced dependence on Q.
Collapse
|
6
|
Nagatomo S, Kitagawa T, Nagai M. Roles of Fe-Histidine bonds in stability of hemoglobin: Recognition of protein flexibility by Q Sepharose. Biophys J 2021; 120:2734-2745. [PMID: 34087219 DOI: 10.1016/j.bpj.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O2 binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the α2β2 tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A. The β-mutant rHb proteins under each peak had identical isoelectric points according to isoelectric focusing electrophoresis. Proteins under each peak were further characterized by Sephadex G-75 gel filtration, far-UV CD, 1H NMR, and resonance Raman spectroscopy. We found that rHb (βH92G) exists as a mixture of αβ-dimers and α2β2 tetramers, and that hemes are released from β-subunits in a fraction of the dimers. An approximate amount of released hemes were estimated to be as large as 30% with Raman relative intensities. It is stressed that Q Sepharose columns can distinguish differences in structural flexibility of proteins having identical isoelectric points by altering the exit rates from the porous beads. Thus, the role of Fe-His (F8) bonds in stabilizing the Hb tetramer first described by Barrick et al. was confirmed in this study. In addition, it was found in this study that a specific Fe-His bond in the β-subunit minimizes globin structural flexibility.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan; School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Capaccioli S, Zheng L, Kyritsis A, Paciaroni A, Vogel M, Ngai KL. The Dynamics of Hydrated Proteins Are the Same as Those of Highly Asymmetric Mixtures of Two Glass-Formers. ACS OMEGA 2021; 6:340-347. [PMID: 33458485 PMCID: PMC7807739 DOI: 10.1021/acsomega.0c04655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 05/31/2023]
Abstract
Customarily, the studies of dynamics of hydrated proteins are focused on the fast hydration water ν-relaxation, the slow structural α-relaxation responsible for a single glass transition, and the protein dynamic transition (PDT). Guided by the analogy with the dynamics of highly asymmetric mixtures of molecular glass-formers, we explore the possibility that the dynamics of hydrated proteins are richer than presently known. By providing neutron scattering, dielectric relaxation, calorimetry, and deuteron NMR data in two hydrated globular proteins, myoglobin and BSA, and the fibrous elastin, we show the presence of two structural α-relaxations, α1 and α2, and the hydration water ν-relaxation, all coupled together with interconnecting properties. There are two glass transition temperatures T g α1and T g α2 corresponding to vitrification of the α1 and α2 processes. Relaxation time τα2(T) of the α2-relaxation changes its Arrhenius temperature dependence to super-Arrhenius on crossing T g α1 from below. The ν-relaxation responds to the two vitrifications by changing the T-dependence of its relaxation time τν(T) on crossing consecutively T g α2 and T g α1. It generates the PDT at T d where τν(T d) matches about five times the experimental instrument timescale τexp, provided that T d > T g α1. This condition is satisfied by the hydrated globular proteins considered in this paper, and the ν-relaxation is in the liquid state with τν(T) having the super-Arrhenius temperature dependence. However, if T d < T g α1, the ν-relaxation fails to generate the PDT because it is in the glassy state and τν(T) has Arrhenius T-dependence, as in the case of hydrated elastin. Overall, the dynamics of hydrated proteins are the same as the dynamics of highly asymmetric mixtures of glass-formers. The results from this study have expanded the knowledge of the dynamic processes and their properties in hydrated proteins, and impact on research in this area is expected.
Collapse
Affiliation(s)
- Simone Capaccioli
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - Lirong Zheng
- School
of Physics and Astronomy, Shanghai Jiao
Tong University, Shanghai 200240, China
- Institute
of Natural Sciences, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Apostolos Kyritsis
- Department
of Physics, National Technical University
of Athens, 157 80 Athens, Greece
| | | | - Michael Vogel
- Institute
of Condensed Matter Physics, Technische
Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Kia L. Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
8
|
Fujiwara S, Kono F, Matsuo T, Sugimoto Y, Matsumoto T, Narita A, Shibata K. Dynamic Properties of Human α-Synuclein Related to Propensity to Amyloid Fibril Formation. J Mol Biol 2019; 431:3229-3245. [DOI: 10.1016/j.jmb.2019.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
|
9
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|