1
|
Nikolaev A, Tropina EV, Boldyrev KN, Maksimov EG, Borshchevskiy V, Mishin A, Yudenko A, Kuzmin A, Kuznetsova E, Semenov O, Remeeva A, Gushchin I. Two distinct mechanisms of flavoprotein spectral tuning revealed by low-temperature and time-dependent spectroscopy. Protein Sci 2024; 33:e4851. [PMID: 38038877 PMCID: PMC10731561 DOI: 10.1002/pro.4851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Flavins such as flavin mononucleotide or flavin adenine dinucleotide are bound by diverse proteins, yet have very similar spectra when in the oxidized state. Recently, we developed new variants of flavin-binding protein CagFbFP exhibiting notable blue (Q148V) or red (I52V A85Q) shifts of fluorescence emission maxima. Here, we use time-resolved and low-temperature spectroscopy to show that whereas the chromophore environment is static in Q148V, an additional protein-flavin hydrogen bond is formed upon photoexcitation in the I52V A85Q variant. Consequently, in Q148V, excitation, emission, and phosphorescence spectra are shifted, whereas in I52V A85Q, excitation and low-temperature phosphorescence spectra are relatively unchanged, while emission spectrum is altered. We also determine the x-ray structures of the two variants to reveal the flavin environment and complement the spectroscopy data. Our findings illustrate two distinct color-tuning mechanisms of flavin-binding proteins and could be helpful for the engineering of new variants with improved optical properties.
Collapse
Affiliation(s)
- Andrey Nikolaev
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elena V. Tropina
- Institute of Spectroscopy RASTroitskMoscowRussia
- National Research University Higher School of EconomicsMoscowRussia
| | | | | | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elizaveta Kuznetsova
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| |
Collapse
|
2
|
Kabir MP, Ouedraogo D, Orozco-Gonzalez Y, Gadda G, Gozem S. Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. J Phys Chem B 2023; 127:1301-1311. [PMID: 36740810 PMCID: PMC9940217 DOI: 10.1021/acs.jpcb.2c06475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
iLOV is an engineered flavin-binding fluorescent protein (FbFP) with applications for in vivo cellular imaging. To expand the range of applications of FbFPs for multicolor imaging and FRET-based biosensing, it is desirable to understand how to modify their absorption and emission wavelengths (i.e., through spectral tuning). There is particular interest in developing FbFPs that absorb and emit light at longer wavelengths, which has proven challenging thus far. Existing spectral tuning strategies that do not involve chemical modification of the flavin cofactor have focused on placing positively charged amino acids near flavin's C4a and N5 atoms. Guided by previously reported electrostatic spectral tunning maps (ESTMs) of the flavin cofactor and by quantum mechanical/molecular mechanical (QM/MM) calculations reported in this work, we suggest an alternative strategy: placing a negatively charged amino acid near flavin's N1 atom. We predict that a single-point mutant, iLOV-Q430E, has a slightly red-shifted absorption and fluorescence maximum wavelength relative to iLOV. To validate our theoretical prediction, we experimentally expressed and purified iLOV-Q430E and measured its spectral properties. We found that the Q430E mutation results in a slight change in absorption and a 4-8 nm red shift in the fluorescence relative to iLOV, in good agreement with the computational predictions. Molecular dynamics simulations showed that the carboxylate side chain of the glutamate in iLOV-Q430E points away from the flavin cofactor, which leads to a future expectation that further red shifting may be achieved by bringing the side chain closer to the cofactor.
Collapse
|
3
|
Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J Biol Chem 2023; 299:102977. [PMID: 36738792 PMCID: PMC10023982 DOI: 10.1016/j.jbc.2023.102977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.
Collapse
|
4
|
Kulakova AM, Khrenova MG, Nemukhin AV. Non-Equivalence of Monomers in the Dimeric Structure of a Bacterial Photoactivated Adenylyl Cyclase. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Wehler P, Armbruster D, Günter A, Schleicher E, Di Ventura B, Öztürk MA. Experimental Characterization of In Silico Red-Shift-Predicted iLOV L470T/Q489K and iLOV V392K/F410V/A426S Mutants. ACS OMEGA 2022; 7:19555-19560. [PMID: 35722011 PMCID: PMC9202016 DOI: 10.1021/acsomega.2c01283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
iLOV is a flavin mononucleotide-binding fluorescent protein used for in vivo cellular imaging similar to the green fluorescent protein. To expand the range of applications of iLOV, spectrally tuned red-shifted variants are desirable to reduce phototoxicity and allow for better tissue penetration. In this report, we experimentally tested two iLOV mutants, iLOVL470T/Q489K and iLOVV392K/F410V/A426S, which were previously computationally proposed by (KhrenovaJ. Phys. Chem. B2017, 121 ( (43), ), pp 10018-10025) to have red-shifted excitation and emission spectra. While iLOVL470T/Q489K is about 20% brighter compared to the WT in vitro, it exhibits a blue shift in contrast to quantum mechanics/molecular mechanics (QM/MM) predictions. Additional optical characterization of an iLOVV392K mutant revealed that V392 is essential for cofactor binding and, accordingly, variants with V392K mutation are unable to bind to FMN. iLOVL470T/Q489K and iLOVV392K/F410V/A426S are expressed at low levels and have no detectable fluorescence in living cells, preventing their utilization in imaging applications.
Collapse
Affiliation(s)
- Pierre Wehler
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Daniel Armbruster
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Andreas Günter
- Institute
of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Erik Schleicher
- Institute
of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Barbara Di Ventura
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Mehmet Ali Öztürk
- Institute
of Biology II, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centers
for Biological Signalling Studies BIOSS and CIBSS, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Meteleshko YI, Khrenova MG, Nemukhin AV. Computer Modeling of Structures of Reversibly Switchable Fluorescent Proteins with LOV Domains. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s106377452105014x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Röllen K, Granzin J, Remeeva A, Davari MD, Gensch T, Nazarenko VV, Kovalev K, Bogorodskiy A, Borshchevskiy V, Hemmer S, Schwaneberg U, Gordeliy V, Jaeger KE, Batra-Safferling R, Gushchin I, Krauss U. The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. J Biol Chem 2021; 296:100662. [PMID: 33862085 PMCID: PMC8131319 DOI: 10.1016/j.jbc.2021.100662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.
Collapse
Affiliation(s)
- Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Gensch
- IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France; Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stefanie Hemmer
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Valentin Gordeliy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
8
|
Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins 2021; 89:1005-1016. [PMID: 33774867 DOI: 10.1002/prot.26078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
9
|
Khrenova MG, Kulakova AM, Nemukhin AV. Light-Induced Change of Arginine Conformation Modulates the Rate of Adenosine Triphosphate to Cyclic Adenosine Monophosphate Conversion in the Optogenetic System Containing Photoactivated Adenylyl Cyclase. J Chem Inf Model 2021; 61:1215-1225. [PMID: 33677973 DOI: 10.1021/acs.jcim.0c01308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the first computational characterization of an optogenetic system composed of two photosensing BLUF (blue light sensor using flavin adenine dinucleotide) domains and two catalytic adenylyl cyclase (AC) domains. Conversion of adenosine triphosphate (ATP) to the reaction products, cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi), catalyzed by ACs initiated by excitation in photosensing domains has emerged in the focus of modern optogenetic applications because of the request in photoregulated enzymes that modulate cellular concentrations of signaling messengers. The photoactivated AC from the soil bacterium Beggiatoa sp. (bPAC) is an important model showing a considerable increase in the ATP to cAMP conversion rate in the catalytic domain after the illumination of the BLUF domain. The 1 μs classical molecular dynamics simulations reveal that the activation of the BLUF domain leading to tautomerization of Gln49 in the chromophore-binding pocket results in switching of the position of the side chain of Arg278 in the active site of AC. Allosteric signal transmission pathways between Gln49 from BLUF and Arg278 from AC were revealed by the dynamical network analysis. The Gibbs energy profiles of the ATP → cAMP + PPi reaction computed using QM(DFT(ωB97X-D3/6-31G**))/MM(CHARMM) molecular dynamics simulations for both Arg278 conformations in AC clarify the reaction mechanism. In the light-activated system, the corresponding arginine conformation stabilizes the pentacoordinated phosphorus of the α-phosphate group in the transition state, thus lowering the activation energy. Simulations of the bPAC system with the Tyr7Phe replacement in the BLUF demonstrate occurrence of both arginine conformations in an equal ratio, explaining the experimentally observed intermediate catalytic activity of the bPAC-Y7F variant as compared with the dark and light states of the wild-type bPAC.
Collapse
Affiliation(s)
- Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow 119071 Russian Federation
| | - Anna M Kulakova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| |
Collapse
|
10
|
Cardoso
Ramos F, Cupellini L, Mennucci B. Computational Investigation of Structural and Spectroscopic Properties of LOV-Based Proteins with Improved Fluorescence. J Phys Chem B 2021; 125:1768-1777. [PMID: 33566620 PMCID: PMC7917436 DOI: 10.1021/acs.jpcb.0c10834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Indexed: 01/22/2023]
Abstract
Flavin-based fluorescent proteins are a class of fluorescent reporters derived from light, oxygen, and voltage (LOV) sensing proteins. Through mutagenesis, natural LOV proteins have been engineered to obtain improved fluorescence properties. In this study, we combined extended classical Molecular Dynamics simulations and multiscale Quantum Mechanics/Molecular Mechanics methods to clarify the relationship between structural and dynamic changes induced by specific mutations and the spectroscopic response. To reach this goal we compared two LOV variants, one obtained by the single mutation needed to photochemically inactivate the natural system, and the other (iLOV) obtained through additional mutations and characterized by a significantly improved fluorescence. Our simulations confirmed the "flipping and crowding" effect induced in iLOV by the additional mutations and revealed its mechanism of action. We also showed that these mutations, and the resulting differences in the composition and flexibility of the binding pockets, are not reflected in significant shifts of the excitation and emission energies, in agreement with the similarity of the spectra measured for the two systems. However, a small but consistent reduction was found in the Stokes shift of iLOV, suggesting a reduction of the intermolecular reorganization experienced by the chromophore after excitation, which could slow down its internal conversion to the ground state and improve the fluorescence.
Collapse
Affiliation(s)
- Felipe Cardoso
Ramos
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa, I-56124, Italy
| |
Collapse
|
11
|
Kapusta DP, Kulakova AM, Khrenova MG. Modeling the Tautomeric Equilibrium and Absorption Spectrum of 4,5-Dimethyl-2-(2'-hydroxyphenyl)imidazole. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420050118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Kulakova AM, Khrenova MG, Nemukhin AV. Structure and dynamics of photoactivatable adenylyl cyclase. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Meteleshko YI, Nemukhin AV, Khrenova MG. Molecular Modeling of Photophysical Properties of Components of Förster Resonance Energy Transfer Pairs Containing Flavin-Based Fluorescent Proteins and Their Analogs. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2019. [DOI: 10.1134/s1990793119030205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Nemukhin AV, Grigorenko BL, Khrenova MG, Krylov AI. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. J Phys Chem B 2019; 123:6133-6149. [DOI: 10.1021/acs.jpcb.9b00591] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander V. Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Bella L. Grigorenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G. Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russian
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
15
|
Orozco-Gonzalez Y, Kabir MP, Gozem S. Electrostatic Spectral Tuning Maps for Biological Chromophores. J Phys Chem B 2019; 123:4813-4824. [DOI: 10.1021/acs.jpcb.9b00489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
16
|
Kabir MP, Orozco-Gonzalez Y, Gozem S. Electronic spectra of flavin in different redox and protonation states: a computational perspective on the effect of the electrostatic environment. Phys Chem Chem Phys 2019; 21:16526-16537. [DOI: 10.1039/c9cp02230a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study discusses how UV/vis absorption spectra of flavin in different redox and protonation states are shifted by the nearby electrostatic microenvironment.
Collapse
Affiliation(s)
| | | | - Samer Gozem
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
17
|
Meteleshko YI, Nemukhin AV, Khrenova MG. Novel flavin-based fluorescent proteins with red-shifted emission bands: a computational study. Photochem Photobiol Sci 2018; 18:177-189. [PMID: 30403258 DOI: 10.1039/c8pp00361k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The iLOV protein is a promising member of the class of flavin mononucleotide (FMN) based fluorescent proteins (FbFPs). It is becoming a popular tool for bioanalytical applications and bioimaging as a competitor of the well-known green fluorescent protein and its analogues. The main limitation of FbFPs is that all the members have close values of their absorption and emission band maxima. Therefore the upcoming challenge is to introduce novel variants of FbFPs to extend their color palette. We report the results of computational studies of iLOV variants, introducing point mutations and chromophore analogues. We found that point mutations of the apoprotein and substitution of FMN with either 8-amino-FMN or 8-methylamino-FMN lead to the red shift of emission bands up to 100 nm. Substitution with 1-deaza-FMN and the point mutations of the apoprotein result in a set of novel fluorescent proteins with emission bands in the "transparent" window where light readily penetrates through mammalian tissues. Newly suggested FbFPs can be used for multicolor imaging and also as components of FRET pairs.
Collapse
Affiliation(s)
- Yulia I Meteleshko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation. and Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119334, Russian Federation
| | - Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation. and Federal Research Center of Biotechnology, Bach Institute of Biochemistry, Russian Academy of Sciences, Leninskiy Prospect 33, 119071 Moscow, Russian Federation
| |
Collapse
|
18
|
Di H, Morantz EK, Sadhwani H, Madden JC, Brinton MA. Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 2018; 525:150-160. [PMID: 30286427 DOI: 10.1016/j.virol.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Esther K Morantz
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Joseph C Madden
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
19
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|