1
|
Water-Based Highly Stretchable PEDOT:PSS/Nonionic WPU Transparent Electrode. Polymers (Basel) 2022; 14:polym14050949. [PMID: 35267772 PMCID: PMC8912668 DOI: 10.3390/polym14050949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has the merits of high electrical conductivity and solution processability, and can be dispersed in water. To improve the stretchability of PEDOT:PSS-based transparent electrode films, the intrinsically conducting polymer PEDOT:PSS was blended with highly stretchable nonionic waterborne polyurethane (WPU) and coated on a thermoplastic polyurethane (TPU) film. Nonionic WPU has good compatibility with PEDOT:PSS, without affecting the acidity. WPU undergoes hydrogen bonding and coulombic attractions with PEDOT:PSS. With variation of the WPU content, differences in the electrical properties, such as the sheet resistance and mechanical stretchability, of the coated thin films were observed. The film with 2.0 wt% WPU could be stretched to 400% of the electrode surface without damage to the surface of the electrode films. The WPU and TPU films both have a polyester group, which provides good adhesion between the WPU-based transparent electrodes and the TPU substrate films. A stretchable alternating current electroluminescence (ACEL) device was constructed by using the water-based PEDOT:PSS/nonionic WPU composite as both the bottom and top transparent electrodes. The fabricated ACEL remained its initial luminance in the 500% stretched state.
Collapse
|
2
|
Electrically conducting duplex-coated gold-PES-UF membrane for capacitive organic fouling mitigation and rejection enhancement. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Zhang P, Zhao C, Zhao T, Liu M, Jiang L. Recent Advances in Bioinspired Gel Surfaces with Superwettability and Special Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900996. [PMID: 31572647 PMCID: PMC6760469 DOI: 10.1002/advs.201900996] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Engineering surface wettability is of great importance in academic research and practical applications. The exploration of hydrogel-based natural surfaces with superior properties has revealed new design principles of surface superwettability. Gels are composed of a cross-linked polymer network that traps numerous solvents through weak interactions. The natural fluidity of the trapped solvents confers the liquid-like property to gel surfaces, making them significantly different from solid surfaces. Bioinspired gel surfaces have shown promising applications in diverse fields. This work aims to summarize the fundamental understanding and emerging applications of bioinspired gel surfaces with superwettability and special adhesion. First, several typical hydrogel-based natural surfaces with superwettability and special adhesion are briefly introduced, followed by highlighting the unique properties and design principles of gel-based surfaces. Then, the superwettability and emerging applications of bioinspired gel surfaces, including liquid/liquid separation, antiadhesion of organisms and solids, and fabrication of thin polymer films, are presented in detail. Finally, an outlook on the future development of these novel gel surfaces is also provided.
Collapse
Affiliation(s)
- Pengchao Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Chuangqi Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Mingjie Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
- International Research Institute for Multidisciplinary Science and Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
4
|
Bai L, Elósegui CG, Li W, Yu P, Fei J, Mao L. Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Front Chem 2019; 7:313. [PMID: 31134185 PMCID: PMC6514146 DOI: 10.3389/fchem.2019.00313] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Organic electrochemical transistors (OECTs) are recently developed high-efficient transducers not only for electrochemical biosensor but also for cell electrophysiological recording due to the separation of gate electrode from the transistor device. The efficient integration of OECTs with electrochemical gate electrode makes the as-prepared sensors with improved performance, such as sensitivity, limit of detection, and selectivity. We herein reviewed the recent progress of OECTs-based biosensors and cell electrophysiology recording, mainly focusing on the principle and chemical design of gate electrode and the channel. First, the configuration, work principle, semiconductor of OECT are briefly introduced. Then different kinds of sensing modes are reviewed, especially for the biosensing and electrophysiological recording. Finally, the challenges and opportunities of this research field are discussed.
Collapse
Affiliation(s)
- Liming Bai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
| | - Cristina García Elósegui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Lu B, Yuk H, Lin S, Jian N, Qu K, Xu J, Zhao X. Pure PEDOT:PSS hydrogels. Nat Commun 2019; 10:1043. [PMID: 30837483 PMCID: PMC6401010 DOI: 10.1038/s41467-019-09003-5] [Citation(s) in RCA: 366] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/11/2019] [Indexed: 01/04/2023] Open
Abstract
Hydrogels of conducting polymers, particularly poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), provide a promising electrical interface with biological tissues for sensing and stimulation, owing to their favorable electrical and mechanical properties. While existing methods mostly blend PEDOT:PSS with other compositions such as non-conductive polymers, the blending can compromise resultant hydrogels' mechanical and/or electrical properties. Here, we show that designing interconnected networks of PEDOT:PSS nanofibrils via a simple method can yield high-performance pure PEDOT:PSS hydrogels. The method involves mixing volatile additive dimethyl sulfoxide (DMSO) into aqueous PEDOT:PSS solutions followed by controlled dry-annealing and rehydration. The resultant hydrogels exhibit a set of properties highly desirable for bioelectronic applications, including high electrical conductivity (~20 S cm-1 in PBS, ~40 S cm-1 in deionized water), high stretchability (> 35% strain), low Young's modulus (~2 MPa), superior mechanical, electrical and electrochemical stability, and tunable isotropic/anisotropic swelling in wet physiological environments.
Collapse
Affiliation(s)
- Baoyang Lu
- School of Pharmacy, Jiangxi Science and Technology Normal University, 330013, Nanchang, China
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nannan Jian
- School of Pharmacy, Jiangxi Science and Technology Normal University, 330013, Nanchang, China
| | - Kai Qu
- School of Pharmacy, Jiangxi Science and Technology Normal University, 330013, Nanchang, China
| | - Jingkun Xu
- School of Pharmacy, Jiangxi Science and Technology Normal University, 330013, Nanchang, China
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|