1
|
Förster M, Ukoji N, Sahle CJ, Niskanen J, Sakrowski R, Surmeier G, Weis C, Irifune T, Imoto S, Yavas H, Huotari S, Marx D, Sternemann C, Tse JS. Generating interstitial water within the persisting tetrahedral H-bond network explains density increase upon compressing liquid water. Proc Natl Acad Sci U S A 2024; 121:e2403662121. [PMID: 39284048 PMCID: PMC11441526 DOI: 10.1073/pnas.2403662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
Despite its ubiquitous nature, the atomic structure of water in its liquid state is still controversially debated. We use a combination of X-ray Raman scattering spectroscopy in conjunction with ab initio and path integral molecular dynamics simulations to study the local atomic and electronic structure of water under high pressure conditions. Systematically increasing fingerprints of non-hydrogen-bonded H[Formula: see text]O molecules in the first hydration shell are identified in the experimental and computational oxygen K-edge excitation spectra. This provides evidence for a compaction mechanism in terms of a continuous collapse of the second hydration shell with increasing pressure via generation of interstitial water within locally tetrahedral hydrogen-bonding environments.
Collapse
Affiliation(s)
- Mirko Förster
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Nnanna Ukoji
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| | | | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, Turun yliopistoFI-20014, Finland
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Christopher Weis
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund44227, Germany
| | - Tetsuo Irifune
- Geodynamics Research Center, Ehime University, Matsuyama790, Japan
| | - Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum44780, Germany
| | - Hasan Yavas
- Deutsches Elektronen-Synchrotron, Hamburg22607, Germany
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Simo Huotari
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum44780, Germany
| | | | - John S. Tse
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
| |
Collapse
|
2
|
Kacenauskaite L, Moncada Cohen M, Van Wyck SJ, Fayer MD. Fast Structural Dynamics in Concentrated HCl Solutions: From Proton Hopping to the Bulk Viscosity. J Am Chem Soc 2024; 146:12355-12364. [PMID: 38682723 DOI: 10.1021/jacs.3c11620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Concentrated acid solutions, particularly HCl, have been studied extensively to examine the proton hopping and infrared spectral signatures of hydronium ions. Much less attention has been given to the structural dynamics of concentrated HCl solutions. Here, we apply optical heterodyne detected-optical Kerr effect (OHD-OKE) measurements to examine HCl concentration-dependent dynamics from moderate (0.8 m) to very high (15.5 m) concentrations and compare the results to the dynamics of NaCl solutions, as Na+ is similar in size to the hydronium cation. Both HCl and NaCl OHD-OKE signals decay as triexponentials at all concentrations, in contrast to pure water, which decays as a biexponential. Two remarkable features of the HCl dynamics are the following: (1) the bulk viscosity is linearly related to the slowest decay constant, t3, and (2) the concentration-dependent proton hopping times, determined by ab initio MD simulations and 2D IR chemical exchange experiments, both obtained from the literature, fall on the same line as the slowest structural dynamics relaxation time, t3, within experimental error. The structural dynamics of hydronium/chloride/water clusters, with relaxation times t3, are responsible for the concentration dependence of microscopic property of proton hopping and the macroscopic bulk viscosity. The slowest time constant (t3), which does not have a counterpart in pure water, is 3 ps at 0.8 m and increases by a factor of ∼2 by 15.5 m. The two fastest HCl decay constants, t1 and t2, are similar to those of pure water and increase mildly with the concentration.
Collapse
Affiliation(s)
- Laura Kacenauskaite
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Max Moncada Cohen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Sahle CJ, de Clermont Gallerande E, Niskanen J, Longo A, Elbers M, Schroer MA, Sternemann C, Jahn S. Hydration in aqueous NaCl. Phys Chem Chem Phys 2022; 24:16075-16084. [PMID: 35735165 DOI: 10.1039/d2cp00162d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistic details about the hydration of ions in aqueous solutions are still debated due to the disordered and statistical nature of the hydration process. However, many processes from biology, physical chemistry to materials sciences rely on the complex interplay between solute and solvent. Oxygen K-edge X-ray excitation spectra provide a sensitive probe of the local atomic and electronic surrounding of the excited sites. We used ab initio molecular dynamics simulations together with extensive spectrum calculations to relate the features found in experimental oxygen K-edge spectra of a concentration series of aqueous NaCl with the induced structural changes upon solvation of the salt and distill the spectral fingerprints of the first hydration shells around the Na+- and Cl--ions. By this combined experimental and theoretical approach, we find the strongest spectral changes to indeed result from the first hydration shells of both ions and relate the observed shift of spectral weight from the post- to the main-edge to the origin of the post-edge as a shape resonance.
Collapse
Affiliation(s)
- Christoph J Sahle
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, FR-38043 Grenoble Cedex 9, France.
| | | | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Alessandro Longo
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, FR-38043 Grenoble Cedex 9, France.
| | - Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Sandro Jahn
- Institute of Geology and Mineralogy, University of Cologne, D-50674 Köln, Germany
| |
Collapse
|
4
|
Georgiou R, Sahle CJ, Sokaras D, Bernard S, Bergmann U, Rueff JP, Bertrand L. X-ray Raman Scattering: A Hard X-ray Probe of Complex Organic Systems. Chem Rev 2022; 122:12977-13005. [PMID: 35737888 DOI: 10.1021/acs.chemrev.1c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper provides a review of the characterization of organic systems via X-ray Raman scattering (XRS) and a step-by-step guidance for its application. We present the fundamentals of XRS required to use the technique and discuss the main parameters of the experimental set-ups to optimize spectral and spatial resolution while maximizing signal-to-background ratio. We review applications that target the analysis of mixtures of organic compounds, the identification of minor spectral features, and the spatial discrimination in heterogeneous systems. We discuss the recent development of the direct tomography technique, which utilizes the XRS process as a contrast mechanism for assessing the three-dimensional spatially resolved carbon chemistry of complex organic materials. We conclude by exposing the current limitations and provide an outlook on how to overcome some of the existing challenges and advance future developments and applications of this powerful technique for complex organic systems.
Collapse
Affiliation(s)
- Rafaella Georgiou
- Université Paris-Saclay, CNRS, Ministère de la Culture, UVSQ, MNHN, IPANEMA, F-91192 Saint-Aubin, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | | | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Sylvain Bernard
- Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, UMR 7590, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, 75005 Paris, France
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France.,Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, CNRS, 75005 Paris, France
| | - Loïc Bertrand
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Elbers M, Schmidt C, Sternemann C, Sahle CJ, Jahn S, Albers C, Sakrowski R, Gretarsson H, Sundermann M, Tolan M, Wilke M. Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water. Phys Chem Chem Phys 2021; 23:14845-14856. [PMID: 34223594 DOI: 10.1039/d1cp01490k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.
Collapse
Affiliation(s)
- Mirko Elbers
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Christian Schmidt
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Christoph J Sahle
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - Sandro Jahn
- Institut für Geologie und Mineralogie, Universität zu Köln, D-50674 Cologne, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Robin Sakrowski
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Hlynur Gretarsson
- Deutsches Elektronen-Synchrotron DESY, D-22607, Hamburg, Germany and Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - Martin Sundermann
- Deutsches Elektronen-Synchrotron DESY, D-22607, Hamburg, Germany and Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44227 Dortmund, Germany.
| | - Max Wilke
- Institut für Geowissenschaften, Universität Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
6
|
Sahle CJ, Schroer MA, Niskanen J, Elbers M, Jeffries CM, Sternemann C. Hydration in aqueous osmolyte solutions: the case of TMAO and urea. Phys Chem Chem Phys 2020; 22:11614-11624. [DOI: 10.1039/c9cp06785j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray Raman scattering spectroscopy and first principles simulations reveal details of the hydration and hydrogen-bond topology of trimethylamine N-oxide (TMAO) and urea in aqueous solutions.
Collapse
Affiliation(s)
| | - Martin A. Schroer
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- Hamburg 22607
- Germany
| | - Johannes Niskanen
- Department of Physics and Astronomy
- University of Turku
- FI-20014 Turun Yliopisto
- Finland
| | - Mirko Elbers
- Fakultät Physik/DELTA
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- Hamburg 22607
- Germany
| | | |
Collapse
|
7
|
Fujii K, Aramaki M, Kimura Y. Excited-State Proton Transfer of 5,8-Dicyano-2-naphthol in High-Temperature and High-Pressure Methanol: Effect of Solvent Polarity and Hydrogen Bonding Ability. J Phys Chem B 2018; 122:12363-12374. [DOI: 10.1021/acs.jpcb.8b09235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaori Fujii
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Megumi Aramaki
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yoshifumi Kimura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
8
|
Stefanski J, Schmidt C, Jahn S. Aqueous sodium hydroxide (NaOH) solutions at high pressure and temperature: insights from in situ Raman spectroscopy and ab initio molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:21629-21639. [PMID: 30101256 DOI: 10.1039/c8cp00376a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrothermal diamond anvil cell experiments in combination with Raman spectroscopy and first principles molecular dynamics simulations were performed to investigate the structure and dynamics of aqueous NaOH solutions for temperatures up to 700 °C, pressures up to 850 MPa and two different solute concentrations. The significant changes observed in the O-H stretching region of the Raman spectra between ambient and supercritical conditions are explained by both dynamic effects and structural differences. Especially important are a Grotthuss-like proton transport process and the decreasing network connectivity of the water molecules with increasing temperature. The observed transfer of Raman intensity towards lower wavenumbers by the proton transfer affects a wide range of frequencies and must be considered in the interpretation of Raman spectra of highly basic solutions. We suggest a deconvolution of the spectra using a model with four Gaussian functions, which are assigned to the molecular H2O and OH- vibrations, and one asymmetric exponentially modified Gaussian (EMG) function, which is assigned to [HO(H2O)n]- vibrations.
Collapse
Affiliation(s)
- Johannes Stefanski
- Institute of Geology and Mineralogy, University of Cologne, Zülpicher Straße 49b, 50674 Köln, Germany.
| | | | | |
Collapse
|
9
|
Sahle CJ, Schroer MA, Jeffries CM, Niskanen J. Hydration in aqueous solutions of ectoine and hydroxyectoine. Phys Chem Chem Phys 2018; 20:27917-27923. [DOI: 10.1039/c8cp05308a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We explore the influence of the two osmolytes ectoine and hydroxyectoine on the structure of pure water and aqueous NaCl solutions using non-resonant X-ray Raman scattering spectroscopy at the oxygen K-edge.
Collapse
Affiliation(s)
- Christoph J. Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs
- 38000 Grenoble
- France
| | - Martin A. Schroer
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- 22607 Hamburg
- Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- 22607 Hamburg
- Germany
| | - Johannes Niskanen
- University of Turku
- Department of Physics and Astronomy
- FI-20014 Turun yliopisto
- Finland
| |
Collapse
|