1
|
Zhang Y, Chu JM. Computational Mechanistic Investigations of Biocatalytic Nitrenoid C-H Functionalizations via Engineered Heme Proteins. Chembiochem 2023; 24:e202300260. [PMID: 37134298 DOI: 10.1002/cbic.202300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/05/2023]
Abstract
Engineered heme proteins were developed to possess numerous excellent biocatalytic nitrenoid C-H functionalizations. Computational approaches such as density functional theory (DFT), hybrid quantum mechanics/molecular mechanics (QM/MM), and molecular dynamics (MD) calculations were employed to help understand some important mechanistic aspects of these heme nitrene transfer reactions. This review summarizes advances of computational reaction pathway results of these biocatalytic intramolecular and intermolecular C-H aminations/amidations, focusing on mechanistic origins of reactivity, regioselectivity, enantioselectivity, diastereoselectivity as well as effects of substrate substituent, axial ligand, metal center, and protein environment. Some important common and distinctive mechanistic features of these reactions were also described with brief outlook of future development.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Jia-Min Chu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| |
Collapse
|
2
|
Wang J, Xiao R, Lin Z, Zheng Z, Zheng K. Mechanistic and chemoselective investigations on nitrene transfer reactions mediated by a novel iron-mesoionic carbene catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Zhou Y, Ni J, Lyu Z, Li Y, Wang T, Cheng GJ. Mechanism and Reaction Channels of Iron-Catalyzed Primary Amination of Alkenes by Hydroxylamine Reagents. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhou
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jie Ni
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhen Lyu
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang Li
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Ting Wang
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
4
|
Ashworth MA, Bombino E, de Jong RM, Wijma HJ, Janssen DB, McLean KJ, Munro AW. Computation-Aided Engineering of Cytochrome P450 for the Production of Pravastatin. ACS Catal 2022; 12:15028-15044. [PMID: 36570080 PMCID: PMC9764288 DOI: 10.1021/acscatal.2c03974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/22/2022] [Indexed: 11/29/2022]
Abstract
CYP105AS1 is a cytochrome P450 from Amycolatopsis orientalis that catalyzes monooxygenation of compactin to 6-epi-pravastatin. For fermentative production of the cholesterol-lowering drug pravastatin, the stereoselectivity of the enzyme needs to be inverted, which has been partially achieved by error-prone PCR mutagenesis and screening. In the current study, we report further optimization of the stereoselectivity by a computationally aided approach. Using the CoupledMoves protocol of Rosetta, a virtual library of mutants was designed to bind compactin in a pro-pravastatin orientation. By examining the frequency of occurrence of beneficial substitutions and rational inspection of their interactions, a small set of eight mutants was predicted to show the desired selectivity and these variants were tested experimentally. The best CYP105AS1 variant gave >99% stereoselective hydroxylation of compactin to pravastatin, with complete elimination of the unwanted 6-epi-pravastatin diastereomer. The enzyme-substrate complexes were also examined by ultrashort molecular dynamics simulations of 50 × 100 ps and 5 × 22 ns, which revealed that the frequency of occurrence of near-attack conformations agreed with the experimentally observed stereoselectivity. These results show that a combination of computational methods and rational inspection could improve CYP105AS1 stereoselectivity beyond what was obtained by directed evolution. Moreover, the work lays out a general in silico framework for specificity engineering of enzymes of known structure.
Collapse
Affiliation(s)
- Mark A. Ashworth
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Elvira Bombino
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - René M. de Jong
- DSM
Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Hein J. Wijma
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands
| | - Dick B. Janssen
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, Netherlands,
| | - Kirsty J. McLean
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom,Department
of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | - Andrew W. Munro
- Manchester
Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
5
|
Wei Y, Conklin M, Zhang Y. Biocatalytic Intramolecular C-H aminations via Engineered Heme Proteins: Full Reaction Pathways and Axial Ligand Effects. Chemistry 2022; 28:e202202006. [PMID: 35840505 PMCID: PMC9804930 DOI: 10.1002/chem.202202006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/09/2023]
Abstract
Engineered heme protein biocatalysts provide an efficient and sustainable approach to develop amine-containing compounds through C-H amination. A quantum chemical study to reveal the complete heme catalyzed intramolecular C-H amination pathway and protein axial ligand effect was reported, using reactions of an experimentally used arylsulfonylazide with hemes containing L=none, SH- , MeO- , and MeOH to simulate no axial ligand, negatively charged Cys and Ser ligands, and a neutral ligand for comparison. Nitrene formation was found as the overall rate-determining step (RDS) and the catalyst with Ser ligand has the best reactivity, consistent with experimental reports. Both RDS and non-RDS (nitrene transfer) transition states follow the barrier trend of MeO-
Collapse
Affiliation(s)
- Yang Wei
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point on HudsonHobokenNJ 07030USA
- Department of Chemistry and BiochemistryLoyola University Chicago1032 W Sheridan RdChicagoIL 60660USA
| | - Melissa Conklin
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point on HudsonHobokenNJ 07030USA
| | - Yong Zhang
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point on HudsonHobokenNJ 07030USA
| |
Collapse
|
6
|
Wang Z, Cheng J, Ding W, Wang D. C(sp3)–H Amination Catalyzed by Ir(Me)-Porphyrin: A Computational Study. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zihao Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhui Cheng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang J, Lin Z, Zheng K, Xiao R, Qian L. Mechanistic and selectivity investigations into Fe-catalyzed 2, 3-disubstituted azaindole formation from β,β-disubstituted tetrazole. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Kalita S, Shaik S, Dubey KD. MD simulations and QM/MM calculations reveal the key mechanistic elements which are responsible for the efficient C-H amination reaction performed by a bioengineered P450 enzyme. Chem Sci 2021; 12:14507-14518. [PMID: 34881002 PMCID: PMC8580044 DOI: 10.1039/d1sc03489h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
An enzyme which is capable of catalyzing C–H amination reactions is considered to be a dream tool for chemists due to its pharmaceutical potential and greener approach. Recently, the Arnold group achieved this feat using an engineered CYP411 enzyme, which further undergoes a random directed evolution which increases its efficiency and selectivity. The present study provides mechanistic insight and the root cause of the success of these mutations to enhance the reactivity and selectivity of the mutant enzyme. This is achieved by means of comprehensive MD simulations and hybrid QM/MM calculations. The study shows that the efficient C–H amination by the engineered CYP411 is a combined outcome of electronic and steric effects. The mutation of the axial cysteine ligand to serine relays electron density to the Fe ion in the heme, and thereby enhances the bonding capability of the heme-iron to the nitrogen atom of the tosyl azide. In comparison, the native cysteine-ligated P450 cannot bind the tosyl azide. Additionally, the A78V and A82L mutations in P411 provide ‘bulk’ to the active site which increases the enantioselectivity via a steric effect. At the same time, the QM/MM calculations elucidate the C–H amination by the iron nitrenoid, revealing a mechanism analogous to Compound I in the native C–H hydroxylation by P450. Computer simulation method reveals the mechanism of C–H amination reaction due to a single site mutation.![]()
Collapse
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University Dadri, Gautam Buddha Nagar Uttar Pradesh 201314 India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J Safra Campus Givat Ram Jerusalem 9140401 Israel
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University Dadri, Gautam Buddha Nagar Uttar Pradesh 201314 India
| |
Collapse
|
9
|
Coin G, Latour JM. Nitrene transfers mediated by natural and artificial iron enzymes. J Inorg Biochem 2021; 225:111613. [PMID: 34634542 DOI: 10.1016/j.jinorgbio.2021.111613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Amines are ubiquitous in biology and pharmacy. As a consequence, introducing N functionalities in organic molecules is attracting strong continuous interest. The past decade has witnessed the emergence of very efficient and selective catalytic systems achieving this goal thanks to engineered hemoproteins. In this review, we examine how these enzymes have been engineered focusing rather on the rationale behind it than the methodology employed. These studies are put in perspective with respect to in vitro and in vivo nitrene transfer processes performed by cytochromes P450. An emphasis is put on mechanistic aspects which are confronted to current molecular knowledge of these reactions. Forthcoming developments are delineated.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France.
| |
Collapse
|
10
|
Wang J, Xiao R, Zheng K, Qian L. Theoretical studies on iron-catalyzed azaindoline formation: mechanism and site-selectivity. Dalton Trans 2021; 50:11370-11375. [PMID: 34382981 DOI: 10.1039/d1dt02373j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and site-selectivity for Fe-catalyzed azaindoline formation from 1,2,3,4-tetrazole were examined computationally. The H-atom abstraction/radical rebound stepwise mechanism is proposed. The aliphatic H-atom abstraction (HAA) vs. electrophilic aromatic substitution (EAS) steps are responsible for the sp3vs. sp2 C-H amination site-selectivity and a larger steric congestion disfavors sp2 EAS, thus resulting in Fe-catalyzed site-selectivity toward sp3 C-H amination.
Collapse
Affiliation(s)
- Juping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | | | | | | |
Collapse
|
11
|
Huang H, Zhao D, Yang Z. Theoretical
s
tudy of enantioenriched aminohydroxylation of styrene catalyzed by an engineered hemoprotein. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong Huang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Dong‐Xia Zhao
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Zhong‐Zhi Yang
- School of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| |
Collapse
|
12
|
Pan D, Luo G, Yu Y, Yang J, Luo Y. Computational insights into Ir(iii)-catalyzed allylic C-H amination of terminal alkenes: mechanism, regioselectivity, and catalytic activity. RSC Adv 2021; 11:19113-19120. [PMID: 35478613 PMCID: PMC9033584 DOI: 10.1039/d1ra03842g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Computational studies on Ir(iii)-catalyzed intermolecular branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference. The result suggests that the reaction proceeds through generation of active species, alkene coordination, allylic C–H activation, decarboxylation, migratory insertion, and protodemetalation. The presence of AgNTf2 could thermodynamically promote the formation of catalytically active species [Cp*Ir(OAc)]+. Both the weaker Ir–C(internal) bond and the closer interatomic distance of N⋯C(internal) in the key allyl-Ir(v)-nitrenoid intermediate make the migratory insertion into Ir–C(internal) bond easier than into the Ir–C(terminal) bond, leading to branch-selective allylic C–H amidation. The high energy barrier for allylic C–H activation in the Co system could account for the observed sluggishness, which is mainly ascribed to the weaker coordination capacity of alkenes to the triplet Cp*Co(OAc)+ and the deficient metal⋯H interaction to assist hydrogen transfer. DFT studies on Ir(iii)-catalyzed branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference.![]()
Collapse
Affiliation(s)
- Deng Pan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Yang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China .,PetroChina Petrochemical Research Institute Beijing 102206 China
| |
Collapse
|
13
|
Balhara R, Chatterjee R, Jindal G. A computational approach to understand the role of metals and axial ligands in artificial heme enzyme catalyzed C-H insertion. Phys Chem Chem Phys 2021; 23:9500-9511. [PMID: 33885085 DOI: 10.1039/d1cp00412c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Engineered heme enzymes such as myoglobin and cytochrome P450s metalloproteins are gaining widespread importance due to their efficiency in catalyzing non-natural reactions. In a recent strategy, the naturally occurring Fe metal in the heme unit was replaced with non-native metals such as Ir, Rh, Co, Cu, etc., and axial ligands to generate artificial metalloenzymes. Determining the best metal-ligand for a chemical transformation is not a trivial task. Here we demonstrate how computational approaches can be used in deciding the best metal-ligand combination which would be highly beneficial in designing new enzymes as well as small molecule catalysts. We have used Density Functional Theory (DFT) to shed light on the enhanced reactivity of an Ir system with varying axial ligands. We look at the insertion of a carbene group generated from diazo precursors via N2 extrusion into a C-H bond. For both Ir(Me) and Fe systems, the first step, i.e., N2 extrusion is the rate determining step. Strikingly, neither the better ligand overlap with 5d orbitals on Ir nor the electrophilicity on the carbene centre play a significant role. A comparison of Fe and Ir systems reveals that a lower distortion in the Ir(Me)-porphyrin on moving from the reactant to the transition state renders it catalytically more active. We notice that for both metal porphyrins, the free energy barriers are affected by axial ligand substitution. Further, for Fe porphyrin, the axial ligand also changes the preferred spin state. We show that for the carbene insertion into the C-H bond, Fe porphyrin systems undergo a stepwise HAT (hydrogen atom transfer) instead of a concerted hydride transfer process. Importantly, we find that the substitution of the axial Me ligand on Ir to imidazole or chloride, or without an axial substitution changes the rate determining step of the reaction. Therefore, an optimum ligand that can balance the barriers for both steps of the catalytic cycle is essential. We subsequently used the QM cluster approach to delineate the protein environment's role and mutations in improving the catalytic activity of the Ir(Me) system.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
14
|
Coin G, Dubourdeaux P, Avenier F, Patra R, Castro L, Lebrun C, Bayle PA, Pécaut J, Blondin G, Maldivi P, Latour JM. Experiments and DFT Computations Combine to Decipher Fe-Catalyzed Amidine Synthesis through Nitrene Transfer and Nitrile Insertion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Patrick Dubourdeaux
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
| | - Frédéric Avenier
- Univ. Paris Saclay, ICMMO, CNRS, UMR 8182, F-91405 Orsay, France
| | - Ranjan Patra
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
- Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| | - Ludovic Castro
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SyMMES, F-38000 Grenoble, France
| | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SyMMES, F-38000 Grenoble, France
| | | | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, IRIG, MEM, F-38000 Grenoble, France
| | - Geneviève Blondin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SyMMES, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
| |
Collapse
|
15
|
Wang YC, Lai XJ, Huang K, Yadav S, Qiu G, Zhang L, Zhou H. Unravelling nitrene chemistry from acyclic precursors: recent advances and challenges. Org Chem Front 2021. [DOI: 10.1039/d0qo01360a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in nitrene chemistry from acyclic precursors are reviewed in this paper.
Collapse
Affiliation(s)
- Yu-Chao Wang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Xiao-Jing Lai
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Keke Huang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Sarita Yadav
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Lianpeng Zhang
- School of Materials Science and Engineering
- Southwest Forestry University
- Kunming 650224
- China
| | - Hongwei Zhou
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|
16
|
Wang C, Wu P, Wang Z, Wang B. The molecular mechanism of P450-catalyzed amination of the pyrrolidine derivative of lidocaine: insights from multiscale simulations. RSC Adv 2021; 11:27674-27680. [PMID: 35480638 PMCID: PMC9037892 DOI: 10.1039/d1ra04564d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Nitrogen heterocycles are key and prevalent motifs in drugs. Evolved variants of cytochrome P450BM3 (CYP102A1) from Bacillus megaterium employ high-valent oxo-iron(iv) species to catalyze the synthesis of imidazolidine-4-ones via an intramolecular C–H amination. Herein, we use multi-scale simulations, including classical molecular dynamics (MD) simulations, quantum mechanical/molecular mechanical (QM/MM) calculations and QM calculations, to reveal the molecular mechanism of the intramolecular C–H amination of the pyrrolidine derivative of lidocaine bearing cyclic amino moieties catalyzed by the variant RP/FV/EV of P450BM3, which bears five mutations compared to wild type. Our calculations show that overall catalysis includes both the enzymatic transformation in P450 and non-enzymatic transformation in water solution. The enzymatic transformation involves the exclusive hydroxylation of the C–H bond of the pyrrolidine derivative of lidocaine, leading to the hydroxylated intermediate, during which the substrate radical would be bypassed. The following dehydration and C–N coupling reactions are found to be much favored in aqueous situation compared to that in the non-polar protein environment. The present findings expand our understanding of the P450-catalyzed C(sp3)–H amination reaction. Nitrogen heterocycles are key and prevalent motifs in drugs.![]()
Collapse
Affiliation(s)
- Conger Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
17
|
Steck V, Kolev JN, Ren X, Fasan R. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts. J Am Chem Soc 2020; 142:10343-10357. [PMID: 32407077 DOI: 10.1021/jacs.9b12859] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochromes P450 have been recently identified as a promising class of biocatalysts for mediating C-H aminations via nitrene transfer, a valuable transformation for forging new C-N bonds. The catalytic efficiency of P450s in these non-native transformations is however significantly inferior to that exhibited by these enzymes in their native monooxygenase function. Using a mechanism-guided strategy, we report here the rational design of a series of P450BM3-based variants with dramatically enhanced C-H amination activity acquired through disruption of the native proton relay network and other highly conserved structural elements within this class of enzymes. This approach further guided the identification of XplA and BezE, two "atypical" natural P450s implicated in the degradation of a man-made explosive and in benzastatins biosynthesis, respectively, as very efficient C-H aminases. Both XplA and BezE could be engineered to further improve their C-H amination reactivity, which demonstrates their evolvability for abiological reactions. These engineered and natural P450 catalysts can promote the intramolecular C-H amination of arylsulfonyl azides with over 10 000-14 000 catalytic turnovers, ranking among the most efficient nitrene transfer biocatalysts reported to date. Mechanistic and structure-reactivity studies provide insights into the origin of the C-H amination reactivity enhancement and highlight the divergent structural requirements inherent to supporting C-H amination versus C-H monooxygenation reactivity within this class of enzymes. Overall, this work provides new promising scaffolds for the development of nitrene transferases and demonstrates the value of mechanism-driven rational design as a strategy for improving the catalytic efficiency of metalloenzymes in the context of abiological transformations.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joshua N Kolev
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Xinkun Ren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
18
|
Wang J, Gao H, Yang L, Gao YQ. Role of Engineered Iron-haem Enzyme in Reactivity and Stereoselectivity of Intermolecular Benzylic C–H Bond Amination. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Juping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui Gao
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Yu Y, Luo G, Yang J, Luo Y. Cobalt-catalysed unactivated C(sp 3)–H amination: two-state reactivity and multi-reference electronic character. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00239a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A remarkable two-state reactivity scenario and an unusual multi-reference character have been computationally found in Co-catalysed C(sp3)–H amination. In addition, the investigation on the additive, aminating reagent, metal center, and auxiliary ligand provides implications for development of new catalytic C–H functionalization systems.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
20
|
Wang P, Deng L. Recent Advances in Iron-Catalyzed C-H Bond AminationviaIron Imido Intermediate. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800427] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345Lingling Road, Shanghai 200032 China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences; 345Lingling Road, Shanghai 200032 China
| |
Collapse
|
21
|
Li J, Zhang H, Liu G, Tang Y, Tu Y, Li W. Computational Insight Into Vitamin K 1 ω-Hydroxylation by Cytochrome P450 4F2. Front Pharmacol 2018; 9:1065. [PMID: 30319412 PMCID: PMC6167488 DOI: 10.3389/fphar.2018.01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022] Open
Abstract
Vitamin K1 (VK1) plays an important role in the modulation of bleeding disorders. It has been reported that ω-hydroxylation on the VK1 aliphatic chain is catalyzed by cytochrome P450 4F2 (CYP4F2), an enzyme responsible for the metabolism of eicosanoids. However, the mechanism of VK1 ω-hydroxylation by CYP4F2 has not been disclosed. In this study, we employed a combination of quantum mechanism (QM) calculations, homology modeling, molecular docking, molecular dynamics (MD) simulations, and combined quantum mechanism/molecular mechanism (QM/MM) calculations to investigate the metabolism profile of VK1 ω-hydroxylation. QM calculations based on the truncated VK1 model show that the energy barrier for ω-hydroxylation is about 6-25 kJ/mol higher than those at other potential sites of metabolism. However, results from the MD simulations indicate that hydroxylation at the ω-site is more favorable than at the other potential sites, which is in accordance with the experimental observation. The evaluation of MD simulations was further endorsed by the QM/MM calculation results. Our studies thus suggest that the active site residues of CYP4F2 play a determinant role in the ω-hydroxylation. Our results provide structural insights into the mechanism of VK1 ω-hydroxylation by CYP4F2 at the atomistic level and are helpful not only for characterizing the CYP4F2 functions but also for looking into the ω-hydroxylation mediated by other CYP4 enzymes.
Collapse
Affiliation(s)
- Junhao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hongxiao Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Su H, Ma G, Liu Y. Theoretical Insights into the Mechanism and Stereoselectivity of Olefin Cyclopropanation Catalyzed by Two Engineered Cytochrome P450 Enzymes. Inorg Chem 2018; 57:11738-11745. [DOI: 10.1021/acs.inorgchem.8b01875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Su
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Guangcai Ma
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yongjun Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|