1
|
Sarkar B, Ishii K, Tahara T. Pulsed-Interleaved-Excitation Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2024; 128:4685-4695. [PMID: 38692581 PMCID: PMC11104349 DOI: 10.1021/acs.jpcb.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
We report on pulsed-interleaved-excitation two-dimensional fluorescence lifetime correlation spectroscopy (PIE 2D FLCS) to study biomolecular structural dynamics with high sensitivity and high time resolution using Förster resonance energy transfer (FRET). PIE 2D FLCS is an extension of 2D FLCS, which is a unique single-molecule fluorescence method that uses fluorescence lifetime information to distinguish different fluorescence species in equilibrium and resolves their interconversion dynamics with a submicrosecond time resolution. Because 2D FLCS has used only a single-color excitation so far, it was difficult to distinguish a very low-FRET (or zero-FRET) species from only donor-labeled species. We overcome this difficulty by implementing the PIE scheme (i.e., alternate excitation of the donor and acceptor dyes using two temporally interleaved excitations with different colors) to 2D FLCS, realizing two-color excitation and two-color fluorescence detection in 2D FLCS. After proof-of-principle PIE 2D FLCS analysis on the photon data synthesized with Monte Carlo simulation, we apply PIE 2D FLCS to a DNA-hairpin sample and show that this method readily distinguishes four fluorescent species, i.e., high-FRET, low-FRET, and two single-dye-labeled species. In addition, we show that PIE 2D FLCS can also quantitatively evaluate the contributions of the donor-acceptor spectral crosstalk, which often appears as artifacts in FRET studies and degrades the information obtained.
Collapse
Affiliation(s)
- Bidyut Sarkar
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kunihiko Ishii
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| |
Collapse
|
2
|
Ghosh A, Enderlein J. Advanced fluorescence correlation spectroscopy for studying biomolecular conformation. Curr Opin Struct Biol 2021; 70:123-131. [PMID: 34371261 DOI: 10.1016/j.sbi.2021.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
We present the recent developments and advances in fluorescence correlation spectroscopy (FCS) and their application to the investigation of biomolecular conformations. In particular, we present and discuss three techniques: multichannel nanosecond FCS, photo-induced electron transfer FCS, and fluorescence lifetime correlation spectroscopy. We briefly describe each method and discuss recent applications to diverse biophysical studies of biomolecular conformation.
Collapse
Affiliation(s)
- Arindam Ghosh
- Third Institute of Physics, Biophysics, University of Göttingen, Friedrich Hund Platz 1 Göttingen, 37077, Germany
| | - Jörg Enderlein
- Third Institute of Physics, Biophysics, University of Göttingen, Friedrich Hund Platz 1 Göttingen, 37077, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen, 37077, Germany.
| |
Collapse
|
3
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Otosu T, Yamaguchi S. Leaflet-specific Lipid Diffusion Revealed by Fluorescence Lifetime Correlation Analyses. CHEM LETT 2020. [DOI: 10.1246/cl.200539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
5
|
Kondoh M, Moritani H, Ishibashi TA. Observation of Translational Diffusion in a Planer Supported Lipid Bilayer Membrane by Total Internal Reflection-Transient Grating Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masato Kondoh
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hidekazu Moritani
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Taka-aki Ishibashi
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
6
|
Otosu T, Yamaguchi S. Effect of electrostatic interaction on the leaflet-specific diffusion in a supported lipid bilayer revealed by fluorescence lifetime correlation analysis. Phys Chem Chem Phys 2020; 22:1242-1249. [DOI: 10.1039/c9cp05833h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid–support electrostatic interaction determines the lipid dynamics in the proximal leaflet of a SLB.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry
- Graduate School of Science and Engineering
- Saitama University
- Saitama 338-8570
- Japan
| |
Collapse
|
7
|
Otosu T, Yamaguchi S. Reduction of glass-surface charge density slows the lipid diffusion in the proximal leaflet of a supported lipid bilayer. J Chem Phys 2019; 151:025102. [PMID: 31301703 DOI: 10.1063/1.5103221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the effect of a solid support on the dynamical properties of a supported lipid bilayer (SLB) is a prerequisite for the applications of SLB as a model biomembrane. Here, we applied two-dimensional fluorescence lifetime correlation spectroscopy to examine the effect of solution pH on the diffusion of lipids in the proximal/distal leaflets of a zwitterionic SLB. Leaflet-specific diffusion analyses at various pH revealed that the diffusion of lipids in the proximal leaflet facing a glass surface becomes slower by decreasing pH with the transition pH of ∼7.4. We attributed it to the reduction of the surface charge density of a glass support. Furthermore, the data clearly showed that the lipid diffusion in the distal leaflet facing a bulk solution is insensitive to the change in the diffusion property of the proximal leaflet. This reflects a weak interleaflet coupling between the proximal and distal leaflets of the SLB.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
8
|
Otosu T, Yamaguchi S. Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy: Concepts and Applications. Molecules 2018; 23:E2972. [PMID: 30441830 PMCID: PMC6278346 DOI: 10.3390/molecules23112972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
We review the basic concepts and recent applications of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS), which is the extension of fluorescence correlation spectroscopy (FCS) to analyze the correlation of fluorescence lifetime in addition to fluorescence intensity. Fluorescence lifetime is sensitive to the microenvironment and can be a "molecular ruler" when combined with FRET. Utilization of fluorescence lifetime in 2D FLCS thus enables us to quantify the inhomogeneity of the system and the interconversion dynamics among different species with a higher time resolution than other single-molecule techniques. Recent applications of 2D FLCS to various biological systems demonstrate that 2D FLCS is a unique and promising tool to quantitatively analyze the microsecond conformational dynamics of macromolecules at the single-molecule level.
Collapse
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan.
| |
Collapse
|
9
|
Otosu T, Yamaguchi S. Quantifying the Diffusion of Lipids in the Proximal/Distal Leaflets of a Supported Lipid Bilayer by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2018; 122:10315-10319. [DOI: 10.1021/acs.jpcb.8b08614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Takuhiro Otosu
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Shoichi Yamaguchi
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| |
Collapse
|