1
|
Sukhanov AA, Milanovsky GE, Vitukhnovskaya LA, Mamedov MD, Salikhov KM, Semenov AY. Kinetics of Electron Transfer between Redox Cofactors in Photosystem I Measured by High-Frequency EPR Spectroscopy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1851-1862. [PMID: 39523121 DOI: 10.1134/s0006297924100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
The kinetics of the primary electron donor P700+ and the quinone acceptor A1- redox transitions were simultaneously studied for the first time in the time range of 200 μs-10 ms using high-frequency pulse Q-band EPR spectroscopy at cryogenic temperatures in various complexes of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803. In the A1-core PSI complexes that lack 4Fe4S clusters, the kinetics of the A1- and P700+ signals disappearance at 100 K were similar and had a characteristic time of τ ≈ 500 μs, caused by charge recombination in the P700+A1A- ion-radical pair in the A branch of redox cofactors. The kinetics of the backward electron transfer from A1B- to P700+ in the B branch of redox cofactors with τ < 100 μs could not be resolved due to time limitations of the method. In the native PSI complexes with a full set of redox cofactors and in the FX-core complexes, containing the 4Fe4S cluster FX, the kinetics of the A1- signal was significantly faster than that of the P700+ signal. The disappearance of the A1- signal had a characteristic time of 280-350 μs; it was suggested that, in addition to the backward electron transfer from A1A- to P700+ with τ ≈ 500 μs, its kinetics also includes the forward electron transfer from A1A- to the 4Fe4S cluster FX, which had slowed down to 150-200 μs. In the kinetics of P700+ reduction, it was possible to distinguish components caused by the backward electron transfer from A1- (τ ≈ 500 μs) and from 4Fe4S clusters (τ = 1 ms for the FX-core and τ > 5 ms for native complexes). These results are in qualitative agreement with the data on the kinetics of P700+ reduction obtained previously using pulse absorption spectrometry at cryogenic temperatures.
Collapse
Affiliation(s)
- Andrey A Sukhanov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Zavoisky Physical-Technical Institute, Kazan, 420111, Russia
| | - Georgy E Milanovsky
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Liya A Vitukhnovskaya
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Kev M Salikhov
- Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Zavoisky Physical-Technical Institute, Kazan, 420111, Russia
| | - Alexey Yu Semenov
- A. N. Belozersky Research Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
2
|
Santabarbara S, Casazza AP. Thermodynamic Factors Controlling Electron Transfer among the Terminal Electron Acceptors of Photosystem I: Insights from Kinetic Modelling. Int J Mol Sci 2024; 25:9795. [PMID: 39337283 PMCID: PMC11432928 DOI: 10.3390/ijms25189795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Photosystem I is a key component of primary energy conversion in oxygenic photosynthesis. Electron transfer reactions in Photosystem I take place across two parallel electron transfer chains that converge after a few electron transfer steps, sharing both the terminal electron acceptors, which are a series of three iron-sulphur (Fe-S) clusters known as FX, FA, and FB, and the terminal donor, P700. The two electron transfer chains show kinetic differences which are, due to their close geometrical symmetry, mainly attributable to the tuning of the physicochemical reactivity of the bound cofactors, exerted by the protein surroundings. The factors controlling the rate of electron transfer between the terminal Fe-S clusters are still not fully understood due to the difficulties of monitoring these events directly. Here we present a discussion concerning the driving forces associated with electron transfer between FX and FA as well as between FA and FB, employing a tunnelling-based description of the reaction rates coupled with the kinetic modelling of forward and recombination reactions. It is concluded that the reorganisation energy for FX- oxidation shall be lower than 1 eV. Moreover, it is suggested that the analysis of mutants with altered FA redox properties can also provide useful information concerning the upstream phylloquinone cofactor energetics.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Consiglio Nazionale delle Ricerche, Via A. Corti 12, 20133 Milano, Italy;
| | | |
Collapse
|
3
|
Kirpich JS, Luo L, Nelson MR, Agarwala N, Xu W, Hastings G. Is the A -1 Pigment in Photosystem I Part of P700? A (P700 +-P700) FTIR Difference Spectroscopy Study of A -1 Mutants. Int J Mol Sci 2024; 25:4839. [PMID: 38732056 PMCID: PMC11084411 DOI: 10.3390/ijms25094839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.
Collapse
Affiliation(s)
- Julia S. Kirpich
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Michael R. Nelson
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Cherepanov DA, Milanovsky GE, Neverov KV, Obukhov YN, Maleeva YV, Aybush AV, Kritsky MS, Nadtochenko VA. Exciton interactions of chlorophyll tetramer in water-soluble chlorophyll-binding protein BoWSCP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123847. [PMID: 38217986 DOI: 10.1016/j.saa.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The exciton interaction of four chlorophyll a (Chl a) molecules in a symmetrical tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP was analyzed in the pH range of 3-11. Exciton splitting ΔE = 232 ± 2 cm-1 of the Qy band of Chl a into two subcomponents with relative intensities of 78.1 ± 0.7 % and 21.9 ± 0.7 % was determined by a joint decomposition of the absorption and circular dichroism spectra into Gaussian functions. The exciton coupling parameters were calculated based on the BoWSCP atomic structure in three approximations: the point dipole model, the distributed atomic monopoles, and direct ab initio calculations in the TDDFT/PCM approximation. The Coulomb interactions of monomers were calculated within the continuum model using three values of optical permittivity. The models based on the properties of free Chl a in solution suffer from significant errors both in estimating the absolute value of the exciton interaction and in the relative intensity of exciton transitions. Calculations within the TDDFT/PCM approximation reproduce the experimentally determined parameters of the exciton splitting and the relative intensities of the exciton bands. The following factors of pigment-protein and pigment-pigment interactions were examined: deviation of the macrocycle geometry from the planar conformation of free Chl; the formation of hydrogen bonds between the macrocycle and water molecules; the overlap of wave functions of monomers at close distances. The most significant factor is the geometrical deformation of the porphyrin macrocycle, which leads to an increase in the dipole moment of Chl monomer from 5.5 to 6.9 D and to a rotation of the dipole moment by 15° towards the cyclopentane ring. The contributions of resonant charge-transfer states to the wave functions of the Chl dimer were determined and the transition dipole moments of the symmetric and antisymmetric charge-transfer states were estimated.
Collapse
Affiliation(s)
- D A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation; A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Leninskye gory, 1b.40, Russian Federation.
| | - G E Milanovsky
- A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Leninskye gory, 1b.40, Russian Federation
| | - K V Neverov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation; Faculty of Biology, Moscow State University, 119234 Moscow, Leninskye gory, 1b.12, Russian Federation
| | - Yu N Obukhov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation
| | - Yu V Maleeva
- Faculty of Biology, Moscow State University, 119234 Moscow, Leninskye gory, 1b.12, Russian Federation
| | - A V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation
| | - M S Kritsky
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation
| | - V A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation; Department of Chemistry, Moscow State University, 119991 Moscow, Leninskye gory, 1b.3, Russian Federation
| |
Collapse
|
5
|
Cherepanov D, Aybush A, Johnson TW, Shelaev I, Gostev F, Mamedov M, Nadtochenko V, Semenov A. Inverted region in the reaction of the quinone reduction in the A 1-site of photosystem I from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 159:115-131. [PMID: 37093503 DOI: 10.1007/s11120-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Photosystem I from the menB strain of Synechocystis sp. PCC 6803 containing foreign quinones in the A1 sites was used for studying the primary steps of electron transfer by pump-probe femtosecond laser spectroscopy. The free energy gap (- ΔG) of electron transfer between the reduced primary acceptor A0 and the quinones bound in the A1 site varied from 0.12 eV for the low-potential 1,2-diamino-anthraquinone to 0.88 eV for the high-potential 2,3-dichloro-1,4-naphthoquinone, compared to 0.5 eV for the native phylloquinone. It was shown that the kinetics of charge separation between the special pair chlorophyll P700 and the primary acceptor A0 was not affected by quinone substitutions, whereas the rate of A0 → A1 electron transfer was sensitive to the redox-potential of quinones: the decrease of - ΔG by 400 meV compared to the native phylloquinone resulted in a ~ fivefold slowing of the reaction The presence of the asymmetric inverted region in the ΔG dependence of the reaction rate indicates that the electron transfer in photosystem I is controlled by nuclear tunneling and should be treated in terms of quantum electron-phonon interactions. A three-mode implementation of the multiphonon model, which includes modes around 240 cm-1 (large-scale protein vibrations), 930 cm-1 (out-of-plane bending of macrocycles and protein backbone vibrations), and 1600 cm-1 (double bonds vibrations) was applied to rationalize the observed dependence. The modes with a frequency of at least 1600 cm-1 make the predominant contribution to the reorganization energy, while the contribution of the "classical" low-frequency modes is only 4%.
Collapse
Affiliation(s)
- Dmitry Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - T Wade Johnson
- Department of Chemistry, Susquehanna University, 514 University Ave., Selinsgrove, PA, 17870, USA
| | - Ivan Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Fedor Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
| | - Mahir Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992
| | - Victor Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russia, 119991
| | - Alexey Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow, Russia, 119991.
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1, bldg 40, Moscow, Russia, 119992.
| |
Collapse
|
6
|
Sukhanov AA, Mamedov MD, Milanovsky GE, Salikhov KM, Semenov AY. Changes in the Electron Transfer Symmetry in the Photosystem I Reaction Centers upon Removal of Iron-Sulfur Clusters. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1109-1118. [PMID: 36273879 DOI: 10.1134/s0006297922100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
In photosynthetic reaction centers of intact photosystem I (PSI) complexes from cyanobacteria, electron transfer at room temperature occurs along two symmetrical branches of redox cofactors A and B at a ratio of ~3 : 1 in favor of branch A. Previously, this has been indirectly demonstrated using pulsed absorption spectroscopy and more directly by measuring the decay modulation frequencies of electron spin echo signals (electron spin echo envelope modulation, ESEEM), which allows to determine the distance between the separated charges of the primary electron donor P700+ and phylloquinone acceptors A1A- and A1B- in the symmetric redox cofactors branches A and B. In the present work, these distances were determined using ESEEM in PSI complexes lacking three 4Fe-4S clusters, FX, FA, and FB, and the PsaC protein subunit (the so-called P700-A1 core), in which phylloquinone molecules A1A and A1B serve as the terminal electron acceptors. It was shown that in the P700-A1 core preparations, the average distance between the centers of the P700+A1- ion-radical pair at a temperature of 150 K in an aqueous glycerol solution and in a dried trehalose matrix, as well as in a trehalose matrix at 280 K, is ~25.5 Å, which corresponds to the symmetrical electron transfer along the A and B branches of redox cofactors at a ratio of 1 : 1. Possible reasons for the change in the electron transfer symmetry in PSI upon removal of the PsaC subunit and 4Fe-4S clusters FX, FA, and FB are discussed.
Collapse
Affiliation(s)
- Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420029, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Georgy E Milanovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Kev M Salikhov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420029, Russia
| | - Alexey Yu Semenov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
7
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
8
|
Kurashov V, Milanovsky G, Luo L, Martin A, Semenov AY, Savikhin S, Cherepanov DA, Golbeck JH, Xu W. Conserved residue PsaB-Trp673 is essential for high-efficiency electron transfer between the phylloquinones and the iron-sulfur clusters in Photosystem I. PHOTOSYNTHESIS RESEARCH 2021; 148:161-180. [PMID: 33991284 DOI: 10.1007/s11120-021-00839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Despite the high level of symmetry between the PsaA and PsaB polypeptides in Photosystem I, some amino acids pairs are strikingly different, such as PsaA-Gly693 and PsaB-Trp673, which are located near a cluster of 11 water molecules between the A1A and A1B quinones and the FX iron-sulfur cluster. In this work, we changed PsaB-Trp673 to PsaB-Phe673 in Synechocystis sp. PCC 6803. The variant contains ~ 85% of wild-type (WT) levels of Photosystem I but is unable to grow photoautotrophically. Both time-resolved and steady-state optical measurements show that in the PsaB-W673F variant less than 50% of the electrons reach the terminal iron-sulfur clusters FA and FB; the majority of the electrons recombine from A1A- and A1B-. However, in those reaction centers which pass electrons forward the transfer is heterogeneous: a minor population shows electron transfer rates from A1A- and A1B- to FX slightly slower than that of the WT, whereas a major population shows forward electron transfer rates to FX slowed to the ~ 10 µs time range. Competition between relatively similar forward and backward rates of electron transfer from the quinones to the FX cluster account for the relatively low yield of long-lived charge separation in the PsaB-W673F variant. A higher water content and its increased mobility observed in MD simulations in the interquinone cavity of the PsaB-W673F variant shifts the pK of PsaB-Asp575 and allows its deprotonation in situ. The heterogeneity found may be rooted in protonation state of PsaB-Asp575, which controls whether electron transfer can proceed beyond the phylloquinone cofactors.
Collapse
Affiliation(s)
- Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - George Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory, 1, Building 40, Moscow, Russia, 119992
| | - Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Antoine Martin
- Department of Physics, Purdue University, West Lafayette, IN, USA
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory, 1, Building 40, Moscow, Russia, 119992
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st, 4, Moscow, Russia, 117977
| | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st, 4, Moscow, Russia, 117977.
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| |
Collapse
|
9
|
Cherepanov DA, Shelaev IV, Gostev FE, Petrova A, Aybush AV, Nadtochenko VA, Xu W, Golbeck JH, Semenov AY. Primary charge separation within the structurally symmetric tetrameric Chl 2AP AP BChl 2B chlorophyll exciplex in photosystem I. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112154. [PMID: 33636482 DOI: 10.1016/j.jphotobiol.2021.112154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/01/2022]
Abstract
In Photosystem I (PS I), the role of the accessory chlorophyll (Chl) molecules, Chl2A and Chl2B (also termed A-1A and A-1B), which are directly adjacent to the special pair P700 and fork into the A- and B-branches of electron carriers, is incompletely understood. In this work, the Chl2A and Chl2B transient absorption ΔA0(λ) at a time delay of 100 fs was identified by ultrafast pump-probe spectroscopy in three pairs of PS I complexes from Synechocystis sp. PCC 6803 with residues PsaA-N600 or PsaB-N582 (which ligate Chl2B or Chl2A through a H2O molecule) substituted by Met, His, and Leu. The ΔA0(λ) spectra were quantified using principal component analysis, the main component of which was interpreted as a mutation-induced shift of the equilibrium between the excited state of primary donor P700⁎ and the primary charge-separated state P700+Chl2-. This equilibrium is shifted to the charge-separated state in wild-type PS I and to the excited P700 in the PS I complexes with the substituted ligands to the Chl2A and Chl2B monomers. The results can be rationalized within the framework of an adiabatic model in which the P700 is electronically coupled with the symmetrically arranged monomers Chl2A and Chl2B; such a structure can be considered a symmetric tetrameric exciplex Chl2APAPBChl2B, in which the excited state (Chl2APAPBChl2B)* is mixed with two charge-transfer states P700+Chl2A- and P700+Chl2B-. The electron redistribution between the two branches in favor of the A-branch apparently takes place in the picosecond time scale after reduction of the Chl2A and Chl2B monomers.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Anastasia Petrova
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskie gory, 1, Building 40, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Kosygina st., 4, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskie gory, 1, Building 40, Russia
| |
Collapse
|
10
|
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shuvalov VA, Semenov AY, Nadtochenko VA. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 146:55-73. [PMID: 32144697 DOI: 10.1007/s11120-020-00731-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 05/09/2023]
Abstract
The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm. The excitation of high-energy chlorophyll in light-harvesting antenna of both species was not accompanied by immediate appearance of an electrochromic shift. In PS I from T. elongatus, the excitation of long-wavelength chlorophyll (LWC) caused a pronounced electrochromic effect at 502 nm assigned to the appearance of CT states of chlorophyll exciplexes. The formation of ion-radical pair P700+A1- at 40 ps was limited by energy transfer from LWC to the primary donor P700 and accompanied by carotenoid bleach at 498 nm. In PS I from Synechocystis 6803, the excitation at 720 nm produced an immediate bidentate bleach at 690/704 nm and synchronous carotenoid response at 508 nm. The bidentate bleach was assigned to the formation of primary ion-radical state PB+Chl2B-, where negative charge is localized predominantly at the accessory chlorophyll molecule in the branch B, Chl2B. The following decrease of carotenoid signal at ~ 5 ps was ascribed to electron transfer to the more distant molecule Chl3B. The reduction of phylloquinone in the sites A1A and A1B was accompanied by a synchronous blue-shift of the carotenoid response to 498 nm, pointing to fast redistribution of unpaired electron between two branches in favor of the state PB+A1A-.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Vladimir A Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
12
|
Agarwala N, Makita H, Luo L, Xu W, Hastings G. Reversible inhibition and reactivation of electron transfer in photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 145:97-109. [PMID: 32447611 DOI: 10.1007/s11120-020-00760-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
In photosystem I (PSI) complexes at room temperature electron transfer from A1- to FX is an order of magnitude faster on the B-branch compared to the A-branch. One factor that might contribute to this branch asymmetry in time constants is TrpB673 (Thermosynechococcus elongatus numbering), which is located between A1B and FX. The corresponding residue on the A-branch, between A1A and FX, is GlyA693. Here, microsecond time-resolved step-scan FTIR difference spectroscopy at 77 K has been used to study isolated PSI complexes from wild type and TrpB673Phe mutant (WB673F mutant) cells from Synechocystis sp. PCC 6803. WB673F mutant cells require glucose for growth and are light sensitive. Photoaccumulated FTIR difference spectra indicate changes in amide I and II protein vibrations upon mutation of TrpB673 to Phe, indicating the protein environment near FX is altered upon mutation. In the WB673F mutant PSI samples, but not in WT PSI samples, the phylloquinone molecule that occupies the A1 binding site is likely doubly protonated following long periods of repetitive flash illumination at room temperature. PSI with (doubly) protonated quinone in the A1 binding site are not functional in electron transfer. However, electron transfer functionality can be restored by incubating the light-treated mutant PSI samples in the presence of added phylloquinone.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Hiroki Makita
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Lujun Luo
- Department of Chemistry, University of Louisiana At Lafayette, Lafayette, LA, 70503, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana At Lafayette, Lafayette, LA, 70503, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
13
|
Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148184. [PMID: 32179058 DOI: 10.1016/j.bbabio.2020.148184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
The Photosystem I (PSI) reaction center in cyanobacteria is comprised of ~96 chlorophyll (Chl) molecules, including six specialized Chl molecules denoted Chl1A/Chl1B (P700), Chl2A/Chl2B, and Chl3A/Chl3B that are arranged in two branches and function in primary charge separation. It has recently been proposed that PSI from Chroococcidiopsis thermalis (Nürnberg et al. (2018) Science 360, 1210-1213) and Fischerella thermalis PCC 7521 (Hastings et al. (2019) Biochim. Biophys. Acta 1860, 452-460) contain Chl f in the positions Chl2A/Chl2B. We tested this proposal by exciting RCs from white-light grown (WL-PSI) and far-red light grown (FRL-PSI) F. thermalis PCC 7521 with femtosecond pulses and analyzing the optical dynamics. If Chl f were in the position Chl2A/Chl2B in FRL-PSI, excitation at 740 nm should have produced the charge-separated state P700+A0- followed by electron transfer to A1 with a τ of ≤25 ps. Instead, it takes ~230 ps for the charge-separated state to develop because the excitation migrates uphill from Chl f in the antenna to the trapping center. Further, we observe a strong electrochromic shift at 685 nm in the final P700+A1- spectrum that can only be explained if Chl a is in the positions Chl2A/Chl2B. Similar arguments rule out the presence of Chl f in the positions Chl3A/Chl3B; hence, Chl f is likely to function solely as an antenna pigment in FRL-PSI. We additionally report the presence of an excitonically coupled homo- or heterodimer of Chl f absorbing around 790 nm that is kinetically independent of the Chl f population that absorbs around 740 nm.
Collapse
|
14
|
Cherepanov DA, Brady NG, Shelaev IV, Nguyen J, Gostev FE, Mamedov MD, Nadtochenko VA, Bruce BD. PSI-SMALP, a Detergent-free Cyanobacterial Photosystem I, Reveals Faster Femtosecond Photochemistry. Biophys J 2020; 118:337-351. [PMID: 31882247 PMCID: PMC6976803 DOI: 10.1016/j.bpj.2019.11.3391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Cyanobacterial photosystem I (PSI) functions as a light-driven cyt c6-ferredoxin/oxidoreductase located in the thylakoid membrane. In this work, the energy and charge transfer processes in PSI complexes isolated from Thermosynechococcus elongatus via conventional n-dodecyl-β-D-maltoside solubilization (DM-PSI) and a, to our knowledge, new detergent-free method using styrene-maleic acid copolymers (SMA-PSI) have been investigated by pump-to-probe femtosecond laser spectroscopy. In DM-PSI preparations excited at 740 nm, the excitation remained localized on the long-wavelength chlorophyll forms within 0.1-20 ps and revealed little or no charge separation and oxidation of the special pair, P700. The formation of ion-radical pair P700+A1- occurred with a characteristic time of 36 ps, being kinetically controlled by energy transfer from the long-wavelength chlorophyll to P700. Quite surprisingly, the detergent-free SMA-PSI complexes upon excitation by these long-wave pulses undergo an ultrafast (<100 fs) charge separation in ∼45% of particles. In the remaining complexes (∼55%), the energy transfer to P700 occurred at ∼36 ps, similar to the DM-PSI. Both isolation methods result in a trimeric form of PSI, yet the SMA-PSI complexes display a heterogenous kinetic behavior. The much faster rate of charge separation suggests the existence of an ultrafast pathway for charge separation in the SMA-PSI that may be disrupted during detergent isolation.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Nathan G Brady
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Jon Nguyen
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Barry D Bruce
- Biochemistry and Cellular and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee; Energy Science & Engineering Program, The Bredesen Center, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
15
|
Poluektov OG, Niklas J, Utschig LM. Spin-Correlated Radical Pairs as Quantum Sensors of Bidirectional ET Mechanisms in Photosystem I. J Phys Chem B 2019; 123:7536-7544. [DOI: 10.1021/acs.jpcb.9b06636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:601-610. [DOI: 10.1016/j.bbabio.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 11/20/2022]
|
17
|
Kurashov V, Gorka M, Milanovsky GE, Johnson TW, Cherepanov DA, Semenov AY, Golbeck JH. Critical evaluation of electron transfer kinetics in P700–FA/FB, P700–FX, and P700–A1 Photosystem I core complexes in liquid and in trehalose glass. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1288-1301. [DOI: 10.1016/j.bbabio.2018.09.367] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|