1
|
Parui S, Jana B. Cold denaturation induced helix-to-helix transition and its implication to activity of helical antifreeze protein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Biomolecules 2020; 10:biom10121649. [PMID: 33317024 PMCID: PMC7764015 DOI: 10.3390/biom10121649] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water’s freezing point and avoiding ice crystals’ growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods’ freezing and liquefying properties, protection of frost plants, enhancement of ice cream’s texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-6710; Fax: +60-39769-7590
| |
Collapse
|
3
|
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153:661-675. [PMID: 32156540 DOI: 10.1016/j.ijbiomac.2020.03.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
By natural selection, organisms evolve different solutions to cope with extremely cold weather. The emergence of an antifreeze protein gene is one of the most momentous solutions. Antifreeze proteins possess an importantly functional ability for organisms to survive in cold environments and are widely found in various cold-tolerant species. In this review, we summarize the origin of antifreeze proteins, describe the diversity of their species-specific properties and functions, and highlight the related biotechnology on the basis of both laboratory tests and bioinformatics analysis. The most recent advances in the applications of antifreeze proteins are also discussed. We expect that this systematic review will contribute to the comprehensive knowledge of antifreeze proteins to readers.
Collapse
Affiliation(s)
- Hong Xiang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Xiaohu Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Lei Ke
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Yong Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology.
| |
Collapse
|