1
|
Zheng CC, Chen YL, Dong HL, Zhang XH, Tan ZJ. Effect of ethanol on the elasticities of double-stranded RNA and DNA revealed by magnetic tweezers and simulations. J Chem Phys 2024; 161:075101. [PMID: 39145565 DOI: 10.1063/5.0211869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
The elasticities of double-stranded (ds) DNA and RNA, which are critical to their biological functions and applications in materials science, can be significantly modulated by solution conditions such as ions and temperature. However, there is still a lack of a comprehensive understanding of the role of solvents in the elasticities of dsRNA and dsDNA in a comparative way. In this work, we explored the effect of ethanol solvent on the elasticities of dsRNA and dsDNA by magnetic tweezers and all-atom molecular dynamics simulations. We found that the bending persistence lengths and contour lengths of dsRNA and dsDNA decrease monotonically with the increase in ethanol concentration. Furthermore, the addition of ethanol weakens the positive twist-stretch coupling of dsRNA, while promotes the negative twist-stretch coupling of dsDNA. Counter-intuitively, the lower dielectric environment of ethanol causes a significant re-distribution of counterions and enhanced ion neutralization, which overwhelms the enhanced repulsion along dsRNA/dsDNA, ultimately leading to the softening in bending for dsRNA and dsDNA. Moreover, for dsRNA, ethanol causes slight ion-clamping across the major groove, which weakens the major groove-mediated twist-stretch coupling, while for dsDNA, ethanol promotes the stretch-radius correlation due to enhanced ion binding and consequently enhances the helical radius-mediated twist-stretch coupling.
Collapse
Affiliation(s)
- Chen-Chen Zheng
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Long Chen
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Long Dong
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- School of Physics and Technology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Transformation characteristics of A-DNA in salt solution revealed through molecular dynamics simulations. Biophys Chem 2022; 288:106845. [DOI: 10.1016/j.bpc.2022.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
|
3
|
Liu T, Yu T, Zhang S, Wang Y, Zhang W. Thermodynamic and kinetic properties of a single base pair in A-DNA and B-DNA. Phys Rev E 2021; 103:042409. [PMID: 34005973 DOI: 10.1103/physreve.103.042409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/27/2021] [Indexed: 11/07/2022]
Abstract
Double stranded DNA can adopt different forms, the so-called A-, B-, and Z-DNA, which play different biological roles. In this work, the thermodynamic and the kinetic parameters for the base-pair closing and opening in A-DNA and B-DNA were calculated by all-atom molecular dynamics simulations at different temperatures. The thermodynamic parameters of the base pair in B-DNA were in good agreement with the experimental results. The free energy barrier of breaking a single base stack results from the enthalpy increase ΔH caused by the disruption of hydrogen bonding and base-stacking interactions, as well as water and base interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss ΔS caused by the restriction of torsional angles and hydration. It was found that the enthalpy change ΔH and the entropy change ΔS for the base pair in A-DNA are much larger than those in B-DNA, and the transition rates between the opening and the closing state for the base pair in A-DNA are much slower than those in B-DNA. The large difference of the enthalpy and entropy change for forming the base pair in A-DNA and B-DNA results from different hydration in A-DNA and B-DNA. The hydration pattern observed around DNA is an accompanying process for forming the base pair, rather than a follow-up of the conformation.
Collapse
Affiliation(s)
- Taigang Liu
- Department of Physics Wuhan University, Wuhan 430072, China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ting Yu
- Department of Physics Wuhan University, Wuhan 430072, China
| | - Shuhao Zhang
- Department of Physics Wuhan University, Wuhan 430072, China
| | - Yujie Wang
- Department of Physics Wuhan University, Wuhan 430072, China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466000, China
| | - Wenbing Zhang
- Department of Physics Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Kovaleva N, Strelnikov IA, Zubova EA. Kinetics of the Conformational Transformation between B- and A-Forms in the Drew-Dickerson Dodecamer. ACS OMEGA 2020; 5:32995-33006. [PMID: 33403261 PMCID: PMC7774075 DOI: 10.1021/acsomega.0c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Some DNA sequences in crystals and in complexes with proteins can exist in the forms intermediate between the B- and A-DNA. Based on this, it was implied that the B-to-A transition for any DNA molecule should go through these intermediate forms also in kinetics. More precisely, the helix parameter Slide has to change first, and the molecule should take the E-form. After that, the Roll parameter changes. In the present work, we simulated the kinetics of the B-A transition in the Drew-Dickerson dodecamer, a known B-philic DNA oligomer. We used the "sugar" coarse-grained model that reproduces ribose flexibility, preserves sequence specificity, employs implicit water and explicit ions, and offers the possibility to vary friction. As the control parameter of the transition, we chose the volume available for a counterion and considered the change from a large to a small volume. In the described system, the B-to-A conformational transformation proved to correspond to a first-order phase transition. The molecule behaves like a small cluster in the region of such a transition, jumping between the A- and B-forms in a wide range of available volumes. The viscosity of the solvent does not affect the midpoint of the transition but only the overall mobility of the system. All helix parameters change synchronously on average, we have not observed the sequence "Slide first, Roll later" in kinetics, and the E-DNA is not a necessary step for the transition between the B- and A-forms in the studied system. So, the existence of the intermediate DNA forms requires specific conditions, shifting the common balance of interactions: certain nucleotide sequence in specific solution or/and the interaction with some protein.
Collapse
|
5
|
Zhang H, Fu H, Shao X, Dehez F, Chipot C, Cai W. Changes in Microenvironment Modulate the B- to A-DNA Transition. J Chem Inf Model 2019; 59:2324-2330. [PMID: 30767527 DOI: 10.1021/acs.jcim.8b00885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
B- to A-DNA transition is known to be sensitive to the macroscopic properties of the solution, such as salt and ethanol concentrations. Microenvironmental effects on DNA conformational transition have been broadly studied. Providing an intuitive picture of how DNA responds to environmental changes is, however, still needed. Analyzing the chemical equilibrium of B-to-A DNA transition at critical concentrations, employing explicit-solvent simulations, is envisioned to help understand such microenvironmental effects. In the present study, free-energy calculations characterizing the B- to A-DNA transition and the distribution of cations were carried out in solvents with different ethanol concentrations. With the addition of ethanol, the most stable structure of DNA changes from the B- to A-form, in agreement with previous experimental observation. In 60% ethanol, a chemical equilibrium is found, showing reversible transition between B- and A-DNA. Analysis of the microenvironment around DNA suggests that with the increase of ethanol concentration, the cations exhibit a significant tendency to move toward the backbone, and mobility of water molecules around the major groove and backbone decreases gradually, leading eventually to a B-to-A transition. The present results provide a free-energy view of DNA microenvironment and of the role of cation motion in the conformational transition.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China
| | - Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China.,State Key Laboratory of Medicinal Chemical Biology , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| | - François Dehez
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , Vandoeuvre-lès-Nancy F-54506 , France.,LPCT, UMR 7019 Université de Lorraine CNRS , Vandoeuvre-lès-Nancy F-54500 , France
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , Vandoeuvre-lès-Nancy F-54506 , France.,LPCT, UMR 7019 Université de Lorraine CNRS , Vandoeuvre-lès-Nancy F-54500 , France.,Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry , Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| |
Collapse
|