1
|
Ishraaq R, Das S. All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes. Chem Commun (Camb) 2024; 60:6093-6129. [PMID: 38819435 DOI: 10.1039/d4cc01557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Densely grafted polymer and polyelectrolyte (PE) brushes, owing to their significant abilities to functionalize surfaces for a plethora of applications in sensing, diagnostics, current rectification, surface wettability modification, drug delivery, and oil recovery, have attracted significant attention over the past several decades. Unfortunately, most of the attention has primarily focused on understanding the properties of the grafted polymer and the PE chains with little attention devoted to studying the behavior of the brush-supported ions (counterions needed to screen the PE chains) and water molecules. Over the past few years, our group has been at the forefront of addressing this gap: we have employed all-atom molecular dynamics (MD) simulations for studying a wide variety of polymer and PE brush systems with specific attention to unraveling the properties and behavior of the brush-supported water molecules and ions. Our findings have revealed some of the most fascinating properties of such brush-supported ions and water molecules, including the most remarkable control of nanofluidic transport afforded by the specific ion and water responses induced by the PE brushes grafted on the inner walls of the nanochannel. This feature article aims to summarize some of our key contributions associated with such atomistic simulations of polymer and PE brushes and brush-supported water molecules and counterions.
Collapse
Affiliation(s)
- Raashiq Ishraaq
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Akdeniz B, Wood JA, Lammertink RGH. Diffusiophoretic Behavior of Polyelectrolyte-Coated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5934-5944. [PMID: 38451220 PMCID: PMC10956496 DOI: 10.1021/acs.langmuir.3c03916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Diffusiophoresis, the movement of particles under a solute concentration gradient, has practical implications in a number of applications, such as particle sorting, focusing, and sensing. For diffusiophoresis in an electrolyte solution, the particle velocity is described by the electrolyte relative concentration gradient and the diffusiophoretic mobility of the particle. The electrolyte concentration, which typically varies throughout the system in space and time, can also influence the zeta potential of particles in space and time. This variation affects the diffusiophoretic behavior, especially when the zeta potential is highly dependent on the electrolyte concentration. In this work, we show that adsorbing a single bilayer (or 4 bilayers) of a polyelectrolyte pair (PDADMAC/PSS) on the surface of microparticles resulted in effectively constant zeta potential values with respect to salt concentration throughout the experimental range of salt concentrations. This allowed a constant potential model for diffusiophoretic transport to describe the experimental observations, which was not the case for uncoated particles in the same electrolyte system. This work highlights the use of simple polyelectrolyte pairs to tune the zeta potential and maintain constant values for precise control of diffusiophoretic transport.
Collapse
Affiliation(s)
- Burak Akdeniz
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Rob G. H. Lammertink
- Soft Matter, Fluidics and Interfaces,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
3
|
Sin JS. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory. J Chem Phys 2022; 157:084902. [DOI: 10.1063/5.0097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we study electrostatic and structural properties between pH-responsive polyelectrolyte brushes by using a strong stretching theory accounting for excluded volume interactions, the density of polyelectrolyte chargeable sites and the Born energy difference between the inside and outside of the brush layer.In a free energy framework, we obtain self-consistent field equations to determine electrostatic properties between two pH-responsive polyelectrolyte brushes. We elucidate that in the region between two pH-responsive polyelectrolyte brushes, electrostatic potential at the centerline and osmotic pressure increase not only with excluded volume interaction, but also with density of chargeable sites on a polyelectrolyte molecule. Importantly, we clarify that when two pH-responsive polyelectrolyte brushes approach each other, the brush thickness becomes short and that a large excluded volume interaction and a large density of chargeable sites yield the enhanced contract of polyelectrolyte brushes. In addition, we also demonstrate how the influence of such quantities as pH, the number of Kuhn monomers, the density of charged sites, the lateral separation between adjacent polyelectrolyte brushes, Kuhn length on the electrostatic and structural properties between the two polyelectrolyte brushes is affected by the exclusion volume interaction. Finally, we investigate the influence of Born energy difference on the thickness of polyelectrolyte brushes and the osmotic pressure between two pH-responsive polyelectrolyte brushes.
Collapse
Affiliation(s)
- Jun-Sik Sin
- Natural Science Center, Kim Il Sung University, Korea, Democratic People's Republic of (North Korea)
| |
Collapse
|
4
|
Affiliation(s)
- Benoît Roux
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Zhou S. Effective electrostatic forces between two neutral surfaces with atomic scale strip shape surface charge separation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Sivasankar VS, Etha SA, Sachar HS, Das S. Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits. Phys Rev E 2020; 102:013103. [PMID: 32794997 DOI: 10.1103/physreve.102.013103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 11/07/2022]
Abstract
We demonstrate that functionalizing nanoslits with pH-responsive polyelectrolyte brushes can lead to extremely fast electro-osmotic (EOS) water transport, where the maximum centreline velocity and the volume flow rate can be an order of magnitude larger than these quantities in identically charged brush-free nanochannels for a wide range of system parameters. Such an enhancement is most remarkable given that the brushes have been known to retard the transport by imparting additional drag on the fluid flow. We argue that this enhancement stems from the localization of the charge density of the brush-induced electric double layer (and, hence, the EOS body force) away from the nanochannel wall (or the location of the wall-induced drag force). This ensures a much larger impact of the EOS body force triggering such fast water transport. Finally, the calculated flux values for the present brush-grafted nanochannels are found to be significantly larger than those for a wide range of nanofluidic membranes and channels, suggesting that the brush functionalization can be considered as a mechanism for enabling such superfast nanofluidic transport.
Collapse
Affiliation(s)
| | - Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
Etha SA, Sivasankar VS, Sachar HS, Das S. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations. Phys Chem Chem Phys 2020; 22:13536-13553. [DOI: 10.1039/d0cp02099k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we develop a theory for describing the thermodynamics, configuration, and electrostatics of strongly-stretched, pH-responsive polyelectrolyte (PE) brushes in the presence of large salt concentrations.
Collapse
Affiliation(s)
- Sai Ankit Etha
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | | | | | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|
8
|
Sachar HS, Sivasankar VS, Etha SA, Chen G, Das S. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Electrophoresis 2019; 41:554-561. [PMID: 31541559 DOI: 10.1002/elps.201900248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/11/2022]
Abstract
In this paper, we provide a theory to quantify the ionic current ( i ion ) in nanochannels grafted with pH-responsive polyelectrolyte (PE) brushes. We consider the PE brushes to be modeled by our recently proposed augmented strong stretching theory (SST) model that improves the existing SST models by incorporating the effects of excluded volume interactions and an extended mass action law. Use of such augmented SST for this problem implies that this is the first study on computing i ion in PE brush-grafted nanochannels accounting for the appropriate coupled configuration-electrostatic description of the PE brushes. i ion is obtained as functions of PE brush grafting density, medium pH and salt concentration ( c ∞ ), and the density of polyelectrolyte chargeable sites (PECS). For large c ∞ , i ion increases linearly with c ∞ (as for such c ∞ , i ion becomes independent of the PE charge and is dominated by the bulk mobility and number density of the electrolyte ions), whereas i ion is independent of c ∞ at small c ∞ (where the electric double layer electrostatics and the total number of ions in the system is dominated by the hydrogen ions). We further witness an enhancement of i ion for smaller pH and larger grafting density at low and moderate c ∞ , while there is little to no effect of the PECS density on the ionic current except for weakly grafted brushes at low c ∞ . We anticipate that this study will serve as a theoretical foundation for a large number of applications that are based on the brush-induced modification of the ionic current in a nanochannel.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | | | - Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Guang Chen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
9
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
10
|
Sachar HS, Sivasankar VS, Das S. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. SOFT MATTER 2019; 15:5973-5986. [PMID: 31290913 DOI: 10.1039/c9sm00765b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we develop a theory to quantify the electrokinetic energy conversion in electrolyte-filled nanochannels grafted with pH-responsive polyelectrolyte (PE) brushes. A pressure-driven flow drives the mobile electrolyte ions of the electric double layer (EDL) supported by the charged PE brushes leading to the generation of a streaming current, a streaming electric field and eventually an electrical energy. The salient feature of this study is that the brushes are described using our recently developed augmented Strong Stretching Theory (SST) model. In all the previous theoretical studies on liquid transport in PE-brush-grafted nanochannels, the brushes have either been assumed to be of constant height (independent of salt concentration or pH) or modelled using the Alexander-de-Gennes model that considers uniform monomer distribution along the brush height. Such simplifications have meant that the salt and the pH dependence of the brush height, the monomer distribution, and the resulting electrostatics have not been appropriately accounted for in the transport calculations. This paper addresses these limitations and provides a much more detailed description of the brushes while capturing the corresponding electrokinetic energy conversion. The results establish that the presence of the PE brushes ensures a localization of the average EDL charge density away from the grafting surface, thereby enabling the migration of the EDL ions with a larger background flow velocity; as a consequence, there is an enhancement of the streaming current, streaming electric field, and the resulting electrical energy generation under certain grafting densities of the PE brushes.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | | |
Collapse
|
11
|
Sachar HS, Sivasankar VS, Das S. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law. SOFT MATTER 2019; 15:559-574. [PMID: 30520929 DOI: 10.1039/c8sm02163e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we develop a theory to account for the effect of excluded volume (EV) interactions in the strong stretching theory (SST) based description of pH-responsive polyelectrolyte (PE) brushes. The existing studies have considered the PE brushes to be present in a θ-solvent and hence have neglected the EV interactions; however, such a consideration cannot describe the situations where the pH-responsive brushes are in a "good" solvent. Secondly, we consider a more expanded form of the mass action law, governing the pH-dependent ionization of the PE molecules, in the SST description of the PE brushes. This expanded form of the mass action law considers different values of γa3 (γ is the density of chargeable sites on the PE molecule and a is the PE Kuhn length) and therefore is an improvement over the existing SST models of PE brushes as well as other theories involving pH-responsive PE molecules that always consider γa3 = 1. Our results demonstrate that the EV effects enhance the brush height by inducing additional PE inter-segmental repulsion. Similarly, the consideration of the expanded form of the mass action law would lead to a reduced (enhanced) brush height for γa3 < 1 (γa3 > 1). We also quantify variables such as the monomer density distribution, the distribution of the ends of the PE brush, and the EDL electrostatic potential and explain their differences with respect to those obtained with no EV interactions or γa3 = 1.
Collapse
Affiliation(s)
- Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| |
Collapse
|
12
|
Maheedhara RS, Jing H, Sachar HS, Das S. Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels. Phys Chem Chem Phys 2018; 20:24300-24316. [DOI: 10.1039/c8cp04089c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper proposes a massively augmented thermoosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes.
Collapse
Affiliation(s)
| | - Haoyuan Jing
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| | | | - Siddhartha Das
- Department of Mechanical Engineering
- University of Maryland
- College Park
- USA
| |
Collapse
|