1
|
Dziura D, Dib IJ, Gbadamosi O, Castillo SR, Dziura M, Murphy RP, Kelley EG, Marquardt D. Determining the rates of α-tocopherol movement in DPPC vesicles using small-angle neutron scattering. Biophys J 2025; 124:590-596. [PMID: 39827369 DOI: 10.1016/j.bpj.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
α-tocopherol (αtoc; vitamin E) is an essential nutrient sufficiently acquired through a balanced diet. This fat-soluble vitamin is most known for its antioxidative properties; however, its fundamental mechanism of action in cellular membranes remains unknown. To this end, we use time-resolved small-angle neutron scattering and a contrast matching scheme to determine the intervesicular exchange (kex) and intrabilayer flip-flop (kf) rates of αtoc in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine vesicles. Moreover, we investigate the role of vesicle concentration and various types of cyclodextrins in affecting these rates. For a 25 mg/mL sample concentration, it was determined that kex and kf were 1.35 ± 0.03 × 10-3 and 0.54 ± 0.10 × 10-3 min-1, which represent half-lives of 513.4 ± 11.7 and 1285.1 ± 242.7 min, respectively. Differential scanning calorimetry confirmed the observed timescales of αtoc movement.
Collapse
Affiliation(s)
- Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Isabelle J Dib
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Omotayo Gbadamosi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Ryan P Murphy
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
2
|
Korolainen H, Olżyńska A, Pajerski W, Chytrosz-Wrobel P, Vattulainen I, Kulig W, Cwiklik L. Assessing vitamin E acetate as a proxy for E-cigarette additives in a realistic pulmonary surfactant model. Sci Rep 2024; 14:23805. [PMID: 39394419 PMCID: PMC11470143 DOI: 10.1038/s41598-024-75301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Additives in vaping products, such as flavors, preservatives, or thickening agents, are commonly used to enhance user experience. Among these, Vitamin E acetate (VEA) was initially thought to be harmless but has been implicated as the primary cause of e-cigarette or vaping product use-associated lung injury, a serious lung disease. In our study, VEA serves as a proxy for other e-cigarette additives. To explore its harmful effects, we developed an exposure system to subject a pulmonary surfactant (PSurf) model to VEA-rich vapor. Through detailed analysis and atomic-level simulations, we found that VEA tends to cluster into aggregates on the PSurf surface, inducing deformations and weakening its essential elastic properties, critical for respiratory cycle function. Apart from VEA, our experiments also indicate that propylene glycol and vegetable glycerin, widely used in e-liquid mixtures, or their thermal decomposition products, alter surfactant properties. This research provides molecular-level insights into the detrimental impacts of vaping product additives on lung health.
Collapse
Affiliation(s)
- Hanna Korolainen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Wojciech Pajerski
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
| | - Paulina Chytrosz-Wrobel
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland.
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00, Prague, Czech Republic.
| |
Collapse
|
3
|
Taktikakis P, Côté M, Subramaniam N, Kroeger K, Youssef H, Badia A, DeWolf C. Understanding the Retention of Vaping Additives in the Lungs: Model Lung Surfactant Membrane Perturbation by Vitamin E and Vitamin E Acetate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5651-5662. [PMID: 38437623 DOI: 10.1021/acs.langmuir.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Deviations from the normal physicochemical and functional properties of pulmonary surfactants are associated with the incidence of lung injury and other respiratory disorders. This study aims to evaluate the alteration of the 2D molecular organization and morphology of pulmonary surfactant model membranes by the electronic cigarette additives α-tocopherol (vitamin E) and α-tocopherol acetate (vitamin E acetate), which have been associated with lung injury, termed e-cigarette or vaping-use-associated lung injury (EVALI). The model membranes used contained a 7:3 molar ratio of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) to which α-tocopherol and α-tocopherol acetate were added to form mixtures of up to 20 mol % additive. The properties of the neat tocopherol additives and DPPC/POPG (7:3) mixtures with increasing molar proportions of additive were evaluated by surface pressure-area isotherms, excess area calculations, Brewster angle microscopy, grazing incidence X-ray diffraction, X-ray reflectivity, and atomic force microscopy. The addition of either additive alters the essential phase balance of the model pulmonary surfactant membrane by generating a greater proportion of the fluid phase. Despite this net fluidization, both tocopherol additives have space-filling effects on the liquid-expanded and condensed phases, yielding negative excess areas in the liquid-expanded phase and reduced tilt angles in the condensed phase. Both tocopherol additives alter the stability of the fluid phase, pushing the eventual collapse of this phase to higher surface pressures than the model membrane in the absence of an additive.
Collapse
Affiliation(s)
- Panagiota Taktikakis
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Mathieu Côté
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Nivetha Subramaniam
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Kailen Kroeger
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Antonella Badia
- Département de chimie and Institut Courtois, Université de Montréal, Complexe des sciences, C.P. 6128, succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Quebec H4B 1R6, Canada
- FRQNT Quebec Centre for Advanced Materials, 2101, rue Jeanne-Mance, Montréal, Quebec H2X 2J6, Canada
| |
Collapse
|
4
|
Srivastava D, Patra N. Telescoping-Solvation-Box Protocol-Based Umbrella Sampling Method for Potential Mean Force Estimation. J Chem Inf Model 2023; 63:6109-6117. [PMID: 37715712 DOI: 10.1021/acs.jcim.3c01072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Previously, it was shown that the telescoping box scheme, in combination with adaptive steered molecule dynamics (ASMD), can be used to estimate the potential of mean force (PMF) with a decrease in computational cost associated with large solvation boxes. Since ASMD reduces to umbrella sampling (US) in the limit of infinitely slow pulling velocity, a hypothesis was made that the telescoping box scheme can be extended to include the US method. The hypothesis was tested using the unfolding pathway of a polyalanine peptide in a water box and translocation of α-tocopherol through the human membrane. Two different approaches were tried: telescoping US (TELUS), in which the number of solvent molecules was linearly coupled to the reaction coordinate, and Block-TELUS, which was a compromise between the fixed solvation box of the US and the window-wise variable solvation box of TELUS. In the case of polyalanine peptide in a water box, both approaches gave overlapping potential of mean force (PMF) concerning the benchmark US-PMF. Window-wise comparison of properties like root-mean-square inner product, Ramachandran plot, α-helix content, and hydrogen bond formation was used to verify that both approaches captured the same dynamics as the US method. Applying the Block-TELUS protocol in the system with diffusing α-tocopherol through the bilayer resulted in overlapping PMF to its US benchmark. A comparison between the window-wise orientation of the chromanol headgroup also produced almost identical results. This study concluded that with the careful application of telescoping solvation boxes, a less computationally expensive US could be performed for systems where the effect of distant solvent molecules on the configurational space sampled in the window depends on the value of the reaction coordinate.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
5
|
Gamage RS, Smith BD. Spontaneous Transfer of Indocyanine Green from Liposomes to Albumin Is Inhibited by the Antioxidant α-Tocopherol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11950-11961. [PMID: 36126324 PMCID: PMC9897306 DOI: 10.1021/acs.langmuir.2c01715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Indocyanine Green (ICG) is a clinically approved organic dye with near-infrared absorption and fluorescence. Over the years, many efforts to improve the photophysical and pharmacokinetic properties of ICG have investigated numerous nanoparticle formulations, especially liposomes with membrane-embedded ICG. A series of systematic absorption and fluorescence experiments, including FRET experiments using ICG as a fluorescence energy acceptor, found that ICG transfers spontaneously from liposomes to albumin protein residing in the external solution with a half-life of ∼10 min at 37 °C. Moreover, transfer of ICG from liposome membranes to external albumin reduces light-activated leakage from thermosensitive liposomes with membrane-embedded ICG. A survey of lipophilic liposome additives discovered that the presence of clinically approved antioxidant, α-tocopherol, greatly increases ICG retention in the liposomes (presumably by forming favorable aromatic stacking interactions), inhibits ICG photobleaching and prevents albumin-induced reduction of light-triggered liposome leakage. This new insight will help researchers with the specific task of optimizing ICG-containing liposomes for fluorescence imaging or phototherapeutics. More broadly, the results suggest a broader design concept concerning light triggered liposome leakage, that is, proximity of the light absorbing dye to the bilayer membrane is a critical design feature that impacts the extent of liposome leakage.
Collapse
|
6
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
7
|
Laudadio E, Minnelli C, Mobbili G, Sabbatini G, Stipa P, Rusciano D, Galeazzi R. Salt effects on mixed composition membranes containing an antioxidant lipophilic edaravone derivative: a computational-experimental study. Org Biomol Chem 2022; 20:5784-5795. [PMID: 35822625 DOI: 10.1039/d2ob01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protection of lipid membranes against oxidation avoids diseases associated with oxidative stress. As a strategy to contrast it, functionalized lipids with antioxidant activity are used to become part of membranes thus protecting them. For this purpose, a lipophilic edaravone derivative has been synthesized, adding a C18 saturated chain to the original structure. The antioxidant activity of C18-Edv has been demonstrated in our previous work. In this study, molecular dynamics simulations have been performed to define the effects of NaCl, MgCl2, KCl, and CaCl2 salts on a palmitoyl-oleoyl-sn-glycero-phosphocholine (POPC) lipid bilayer encapsulating C18-Edv. The results showed how different salts influence POPC lateral diffusion, and the movements of C18-Edv heads, which are antioxidant moieties, were correlated to the ability of C18-Edv molecules to protect membranes. MgCl2 showed a negative impact leading to C18-Edv clusterization and membrane stretching, while KCl and NaCl showed a moderate influence on the mixed lipid membrane structure. CaCl2 increased the exposure of the C18-Edv heads to the lipid-water interface, resulting in the salt with a higher propensity to guarantee protection against radicals in the aqueous phase. Finally, C18-Edv-POPC liposomes have been prepared following the simulation conditions, and then an experimental Oxygen Radical Absorbance Capacity (ORAC) assay has been performed to confirm the in silico predicted results.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Department SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Cristina Minnelli
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Giovanna Mobbili
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Giulia Sabbatini
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Pierluigi Stipa
- Department SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Dario Rusciano
- Research Center, Sooft Italia SpA, 95100, Catania, Italy
| | - Roberta Galeazzi
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
8
|
Molecular dynamics simulation study of the positioning and dynamics of α-tocopherol in phospholipid bilayers. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:889-903. [PMID: 34052860 DOI: 10.1007/s00249-021-01548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/25/2020] [Accepted: 05/17/2021] [Indexed: 01/18/2023]
Abstract
Using molecular dynamics simulations, we investigate the interaction of α-tocopherol (α-toc) with dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC), palmitoyloleoylphosphatidylcholine (POPC), and palmitoyloleoylphosphatidylethanolamine (POPE) lipid bilayers. The goal is to develop a better understanding of the positioning and orientation of α-toc inside the bilayers; properties of significant relevance to α-toc anti-oxidant activity. We investigated bilayer systems with 128 lipids in the presence of either single or 14 α-toc molecules. The single α-toc bilayer systems were investigated via biased MD simulations in which the potential of mean force (PMF) and diffusivity were obtained as functions of the distance between α-toc head group and bilayer center. The higher α-toc concentration systems were investigated with unbiased MD simulations. For all four bilayers at both concentrations, the simulations show that the most probable location of the α-toc hydroxyl group is just below the lipid carbonyl group. Overall, the simulation results are in good agreement with existing experimental data except for the DMPC bilayer system for which some experiments predict α-toc to be located closer to bilayer center. The flip-flop frequency calculated shows that the α-toc flip-flop rate is sensitive to bilayer lipid type. In particular, α-toc has a much lower flip-flop rate in a POPE bilayer compared to the three PC lipid bilayers due to the smaller area per lipid in the POPE bilayer. For DMPC and POPC, the α-toc flip-flop rates are significantly higher at higher α-toc concentration and this appears to be related to the local structural disruption caused by α-toc clusters spanning the bilayer.
Collapse
|
9
|
Cavazos AT, Kinnun JJ, Williams JA, Wassall SR. Vitamin E - phosphatidylethanolamine interactions in mixed membranes with sphingomyelin: Studies by 2H NMR. Chem Phys Lipids 2020; 231:104910. [PMID: 32492380 DOI: 10.1016/j.chemphyslip.2020.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2020] [Accepted: 03/21/2020] [Indexed: 01/13/2023]
Abstract
Among the structurally diverse collection of lipids that comprise the membrane lipidome, polyunsaturated phospholipids are particularly vulnerable to oxidation. The role of α-tocopherol (vitamin E) is to protect this influential class of membrane phospholipid from oxidative damage. Whether lipid-lipid interactions play a role in supporting this function is an unanswered question. Here, we compare the molecular organization of polyunsaturated 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylethanolamine (PDPE-d31) and, as a control, monounsaturated 1-[2H31]palmitoyl-2-oleoylphosphatidylethanolamine (POPE-d31) mixed with sphingomyelin (SM) and α-tocopherol (α-toc) (2:2:1 mol) by solid-state 2H NMR spectroscopy. In both cases the effect of α-toc appears similar. Spectral moments reveal that the main chain melting transition of POPE-d31 and PDPE-d31 is broadened beyond detection. A spectral component attributed to the formation of inverted hexagonal HII phase in coexistence with lamellar Lα phase by POPE-d31 (20 %) and PDPE-d31 (18 %) is resolved following the addition of α-toc. Order parameters in the remaining Lα phase are increased slightly more for POPE-d31 (7%) than PDPE-d31 (4%). Preferential interaction with polyunsaturated phospholipid is not apparent in these results. The propensity for α-toc to form phase structure with negative curvature that is more tightly packed at the membrane surface, nevertheless, may restrict the contact of free radicals with lipid chains on phosphatidylethanolamine molecules that accumulate polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Andres T Cavazos
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Justin A Williams
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University, Indianapolis, IN, 46202, United States.
| |
Collapse
|
10
|
Boonnoy P, Karttunen M, Wong-ekkabut J. Does α-Tocopherol Flip-Flop Help to Protect Membranes Against Oxidation? J Phys Chem B 2018; 122:10362-10370. [DOI: 10.1021/acs.jpcb.8b09064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Jirasak Wong-ekkabut
- Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
| |
Collapse
|