1
|
Li P, Huang C, Niu T, Yang X, Guan H, Ding L, Yang L, Wang Z, Pu Z, Wang R. Characterization and protein engineering of a novel UDP-glycosyltransferase involved in pseudoginsenoside Rt5 biosynthesis from Panax japonicus. Int J Biol Macromol 2024; 277:134537. [PMID: 39111463 DOI: 10.1016/j.ijbiomac.2024.134537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/15/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
As one of rare high-value ocotillol (OCT)-type ginsenosides, pseudoginsenoside Rt5 has been identified with significant pharmacological activities. UDP-glycosyltransferases (UGTs) play pivotal roles in catalyzing the transfer of a glycosyl moiety from a donor to an acceptor. In this study, the novel UGT, PjUGT10, was screened from the transcriptome database of Panax japonicus and identified with the enzymatic activity of transferring a glucosyl group on OCT to produce Rt5. The catalytic efficiency of PjUGT10 was further enhanced by employing site-directed mutation. Notably, the variant M7 exhibited a remarkable 6.16 × 103-fold increase in kcat/Km towards 20S,24R-ocotillol and a significant 2.02 × 103-fold increase to UDP-glucose, respectively. Moreover, molecular dynamics simulations illustrated a reduced distance between 20S,24R-ocotillol and the catalytic residue His15 or UDP-glucose, favoring conformation interactions between the enzyme and substrates. Subsequently, Rt5 was synthesized in an engineered Escherichia coli strain M7 coupled with a UDP-glucose synthetic system. This study not only shed light on the protein engineering that can enhance the catalytic activity of PjUGT10, but also established a whole-cell approach for the production of Rt5.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chaokang Huang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tengfei Niu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolin Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongji Pu
- Xianghu laboratory, Hangzhou 311231, China
| | - Rufeng Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Pu Z, Cao J, Wu W, Song Z, Yang L, Wu J, Yu H. Reconstructing dynamics correlation network to simultaneously improve activity and stability of 2,3-butanediol dehydrogenase by design of distal interchain disulfide bonds. Int J Biol Macromol 2024; 267:131415. [PMID: 38582485 DOI: 10.1016/j.ijbiomac.2024.131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The complete enzyme catalytic cycle includes substrate binding, chemical reaction and product release, in which different dynamic conformations are adopted. Due to the complex relationship among enzyme activity, stability and dynamics, the directed evolution of enzymes for improved activity or stability commonly leads to a trade-off in stability or activity. It hence remains a challenge to engineer an enzyme to have both enhanced activity and stability. Here, we have attempted to reconstruct the dynamics correlation network involved with active center to improve both activity and stability of a 2,3-butanediol dehydrogenase (2,3-BDH) by introducing inter-chain disulfide bonds. A computational strategy was first applied to evaluate the effect of introducing inter-chain disulfide bond on activity and stability of three 2,3-BDHs, and the N258C mutation of 2,3-BDH from Corynebacterium glutamicum (CgBDH) was proved to be effective in improving both activity and stability. In the results, CgBDH-N258C showed a different unfolding curve from the wild type, with two melting temperatures (Tm) of 68.3 °C and 50.8 °C, 19.7 °C and 2 °C higher than 48.6 °C of the wild type. Its half-life was also improved by 14.8-fold compared to the wild type. Catalytic efficiency (kcat/Km) of the mutant was increased by 7.9-fold toward native substrate diacetyl and 8.8-fold toward non-native substrate 2,5-hexanedione compared to the wild type. Molecular dynamics simulations revealed that an interaction network formed by Cys258, Arg162, Ala144 and the catalytic residues was reconstructed in the mutant and the dynamics change caused by the disulfide bond could be propagated through the interactions network. This improved the enzyme stability and activity by decreasing the flexibility and locking more "reactive" pose, respectively. Further construction of mutations including A144G showing a 44-fold improvement in catalytic efficiency toward meso-2,3-BD confirmed the role of modifying dynamics correlation network in tunning enzyme activity and selectivity. This study provided important insights into the relationship among dynamics, enzyme catalysis and stability, and will be useful in the designing new enzymes with co-evolution of stability, activity and selectivity.
Collapse
Affiliation(s)
- Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Jiawen Cao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China.
| |
Collapse
|
3
|
Yang Z, Twidale RM, Gervasoni S, Suardíaz R, Colenso CK, Lang EJM, Spencer J, Mulholland AJ. Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins. J Chem Inf Model 2021; 61:5658-5672. [PMID: 34748329 DOI: 10.1021/acs.jcim.1c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc metalloproteins are ubiquitous, with protein zinc centers of structural and functional importance, involved in interactions with ligands and substrates and often of pharmacological interest. Biomolecular simulations are increasingly prominent in investigations of protein structure, dynamics, ligand interactions, and catalysis, but zinc poses a particular challenge, in part because of its versatile, flexible coordination. A computational workflow generating reliable models of ligand complexes of biological zinc centers would find broad application. Here, we evaluate the ability of alternative treatments, using (nonbonded) molecular mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) at semiempirical (DFTB3) and density functional theory (DFT) levels of theory, to describe the zinc centers of ligand complexes of six metalloenzyme systems differing in coordination geometries, zinc stoichiometries (mono- and dinuclear), and the nature of interacting groups (specifically the presence of zinc-sulfur interactions). MM molecular dynamics (MD) simulations can overfavor octahedral geometries, introducing additional water molecules to the zinc coordination shell, but this can be rectified by subsequent semiempirical (DFTB3) QM/MM MD simulations. B3LYP/MM geometry optimization further improved the accuracy of the description of coordination distances, with the overall effectiveness of the approach depending upon factors, including the presence of zinc-sulfur interactions that are less well described by semiempirical methods. We describe a workflow comprising QM/MM MD using DFTB3 followed by QM/MM geometry optimization using DFT (e.g., B3LYP) that well describes our set of zinc metalloenzyme complexes and is likely to be suitable for creating accurate models of zinc protein complexes when structural information is more limited.
Collapse
Affiliation(s)
- Zongfan Yang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Silvia Gervasoni
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Reynier Suardíaz
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Charlotte K Colenso
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Eric J M Lang
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| |
Collapse
|
4
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Yang H, Du L, Zhang Z. Potential biomarkers in septic shock besides lactate. Exp Biol Med (Maywood) 2020; 245:1066-1072. [PMID: 32276542 DOI: 10.1177/1535370220919076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPACT STATEMENT Elevated lactate has been commonly considered as a biomarker and a useful prognostic tool for resuscitation in septic shock, facilitating physician more rapid intervention and treatment. However, it can be initiated by hypoxia, but persistent hyperlactatemia may not represent persistent hypoxia only. In the article, it is the first time to review potential biomarkers in septic shock from the point of view of energy metabolism including intermediates of TCA cycle, MAS, the NAD+/NADH ratio, NAD+, NADH, malate, and MDH. And the combination of lactate and MDH is also proposed in septic shock for the first time, as MDH in cytoplasm and mitochondria participates in both MAS and TCA cycle for ATP generation. Its feasibility in clinic has been analyzed at the end, although related research is still limited. It is reasonable the combination of lactate and MDH will be more comprehensive to reflex hypoxia in septic shock.
Collapse
Affiliation(s)
- Hang Yang
- Department of Emergency Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Linlin Du
- Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
6
|
Pavlović RZ, Zhiquan L, Güney M, Lalisse RF, Hopf RG, Gallucci J, Moore C, Xie H, Hadad CM, Badjić JD. Multivalent C−H⋅⋅⋅Cl/Br−C Interactions Directing the Resolution of Dynamic and Twisted Capsules. Chemistry 2019; 25:13124-13130. [PMID: 31282022 DOI: 10.1002/chem.201903006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Lei Zhiquan
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Murat Güney
- Department of Chemistry, Science and Art Faculty Agri Ibrahim Çeçen University Agri Turkey
| | - Remy F. Lalisse
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Ryan G. Hopf
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Judith Gallucci
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Curtis Moore
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Han Xie
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| |
Collapse
|